1. Ho, K. M., C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Physical Review Letters, Vol. 65, 3152-3155, 1990.
doi:10.1103/PhysRevLett.65.3152
2. Leung, K. M. and Y. F. Liu, "Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media," Physical Review Letters, Vol. 65, 2646-2649, 1990.
doi:10.1103/PhysRevLett.65.2646
3. Plihal, M. and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Phys. Rev. B, Vol. 44, No. 16, 8565-8571, 1991.
doi:10.1103/PhysRevB.44.8565
4. Mead, R. D., K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Existence of a photonic bandgap in two dimensions," Applied Physics Letters, Vol. 61, 495-497, 1992.
doi:10.1063/1.107868
5. Kafesaki, M. and C. M. Soukoulis, "Historical perspective and review of fundamental principles in modelling three-dimensional periodic structures with emphasis on volumetric EBGs," Metamaterials, N. Engheta and R. W. Ziolkowski (eds)., Chapter 8, John Wiley and Sons, 2006.
6. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 2011.
7. Korringa, J., "On the calculation of the energy of a Bloch wave in a metal," Physica, Vol. 13, No. 6, 392-400, 1947.
doi:10.1016/0031-8914(47)90013-X
8. Kohn, W. and N. Rostoker, "Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium," Phys Rev., Vol. 94, 1111-1120, 1954.
doi:10.1103/PhysRev.94.1111
9. Leung, K. M. and Y. Qiu, "Multiple-scattering calculation of the two-dimensional photonic band structure," Physical Review B, Vol. 48, No. 11, 7767-7771, 1993.
doi:10.1103/PhysRevB.48.7767
10. Liu, Z., C. T. Chan, P. Sheng, A. L. Goertzen, and J. H. Page, "Elastic wave scattering by periodic structures of spherical objects: Theory and experiment," Physical Review B, Vol. 62, 2446-2457, 2000.
doi:10.1103/PhysRevB.62.2446
11. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 2000.
12. Fan, S., P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Physical Review B, Vol. 54, 11245-11251, 1996.
doi:10.1103/PhysRevB.54.11245
13. Ziolkowski, R. W. and M. Tanaka, "FDTD analysis of PBG waveguides, power splitters and switches," Optical and Quantum Electronics, Vol. 31, 843-855, 1999.
doi:10.1023/A:1006964830895
14. Hiett, B. P., J. M. Generowicz, S. J. Cox, M. Molinari, D. H. Beckett, and K. S. Thomas, "Application of finite element methods to photonic crystal modelling," IEE Proc-SciMeasurment Technology, Vol. 149, 293-296, 2002.
doi:10.1049/ip-smt:20020642
15. Jin, J.-M. and D. J. Riley, Finite Element Analysis of Antennas and Arrays, Hoboken, Wiley, 2009.
16. Jin, J.-M., The Finite Element Method in Electromagnetics, John Wiley & Sons, 2014.
17. Luo, M., Q. H. Liu, and Z. Li, "Spectral element method for band structures of two-dimensional anisotropic photonic crystals," Physical Review E, Vol. 79, 026705, 2009.
doi:10.1103/PhysRevE.79.026705
18. Bozzi, M., S. Germani, L. Minelli, L. Perregrini, and P. de Maagt, "Efficient calculation of the dispersion diagram of planar electromagnetic band-gap structures by the MoM/BI-RME method," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 1, 29-35, Jan. 2005.
doi:10.1109/TAP.2004.840522
19. Marini, S., A. Coves, V. E.Boria, and B. Gimeno, "Efficient modal analysis of periodic structures loaded with arbitrarily shaped waveguides," IEEE Trans. on Microwave Theory and Tech., Vol. 58, No. 3, 529-536, 2010.
doi:10.1109/TMTT.2010.2040407
20. Tsang, L. and S. Huang, "Full wave modeling and simulations of the waveguide behavior of printed circuit boards using a broadband Green’s function technique,", Provisional U.S. Patent No. 62/152.702, Apr. 24, 2015.
21. Huang, S., "Broadband Green's function and applications to fast electromagnetic analysis of high-speed interconnects,", Ph.D. Dissertation, Dept. Elect. Eng., Univ. Washington, Seattle, WA, Jun. 2015.
22. Huang, S. and L. Tsang, "Broadband Green's function and applications to fast electromagnetic modeling of high speed interconnects," IEEE International Symposium on Antennas and Propagation, Vancouver, BC, Canada, Jul. 2015.
23. Tsang, L. and S. Huang, "Broadband Green's function with low wavenumber extraction for arbitrary shaped waveguide and applications to modeling of vias in finite power/ground plane," Progress of Electromagnetic Research, Vol. 152, 105-125, 2015.
doi:10.2528/PIER15072605
24. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Vol. 2: Numerical Simulations, 705 pages, Wiley Interscience, 2001.