Vol. 58
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-12-19
Solution for Wide Band Scattering Problems by Using the Improved Ultra-Wide Band Characteristic Basis Function Method
By
Progress In Electromagnetics Research Letters, Vol. 58, 37-43, 2016
Abstract
The ultra-wide band characteristic basis function method (UCBFM) is an efficient approach for analyzing wide band scattering problems because ultra-wide characteristic basis functions (UCBFs) can be reused for any frequency sample in the range of interest. However, the errors of the radar cross section calculated by using the UCBFM are usually large at low frequency points. To mitigate this problem, an improved UCBFs is presented. Improved UCBFs (IUCBFs) are derived from primary characteristic basis functions and secondary level characteristic basis functions (SCBFs) by applying a singular value decomposition procedure at the highest frequency point. This method fully considers the mutual coupling effects among sub-blocks to obtain the SCBFs. Therefore, the accuracy is improved at lower frequency points because of the higher quantity of current information contained in the IUCBFs. Numerical results demonstrate that the proposed method is accurate and efficient.
Citation
Wenyan Nie, and Zhonggen Wang, "Solution for Wide Band Scattering Problems by Using the Improved Ultra-Wide Band Characteristic Basis Function Method," Progress In Electromagnetics Research Letters, Vol. 58, 37-43, 2016.
doi:10.2528/PIERL15080801
References

1. Harrington, R. F., Field Computation by Method of Moments, IEEE Press, 1992.

2. Newman, E. H., "Generation of wide band from the method of moments by interpolating the impedance matrix," IEEE Trans. Antennas Propag., Vol. 36, No. 12, 1820-1824, 1988.
doi:10.1109/8.14404

3. Burke, G. J., E. K. Miller, S. Chakrabarthi, and K. Demarest, "Using modelbased parameter estimation to increase the efficiency of computing electromagnetic transfer functions," IEEE Trans. Magn., Vol. 25, No. 4, 2807-2809, 1988.
doi:10.1109/20.34291

4. Reddy, C. J., M. D. Deshpande, and C. R. Cockrell, "Fast RCS computation over a frequency band using method of moments in conjunction with asymptotic waveform evaluation technique," IEEE Trans. Antennas Propag., Vol. 46, No. 8, 1229-1233, 1998.
doi:10.1109/8.718579

5. Zhang, J. P. and J. M. Jin, "Preliminary study of AWE method for FEM analysis of scattering problems," Microwave Opt. Techno. Lett., Vol. 7, No. 1, 7-12, 1998.
doi:10.1002/(SICI)1098-2760(199801)17:1<7::AID-MOP2>3.0.CO;2-O

6. Sun, Y. F., Y. Du, and Y. Sao, "Fast computation of wideband RCS using characteristic basis function method and asymptotic waveform evaluation technique," Journal of Electronics (in China), Vol. 27, No. 4, 463-467, 2010.

7. Kucharski, A. A., "Wideband characteristic basis functions in radiation problems," Radioengineering, Vol. 21, No. 2, 590-596, 2012.

8. Prakash, V. V. S. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations," Microw. Opt. Technol. Lett., Vol. 36, No. 2, 95-100, 2003.
doi:10.1002/mop.10685

9. Degiorgi, M., G. Tiberi, and A. Monorchio, "An SVD-based method for analyzing electromagnetic scattering from plates and faceted bodies using physical optics bases," IEEE Antennas and Propagation Society International Symposium, 147-150, Jul. 2005.

10. Zhang, J. P. and J. M. Jin, "Preliminary study of AWE method for FEM analysis of scattering problems," Microw. Opt. Technol. Lett., Vol. 17, No. 1, 7-12, 1998.
doi:10.1002/(SICI)1098-2760(199801)17:1<7::AID-MOP2>3.0.CO;2-O

11. Degiorgi, M., G. Tiberi, and A. Monorchio, "Solution of wide band scattering problems using the characteristic basis function method," IET Microwaves Antennas and Propagation, Vol. 6, No. 1, 60-66, 2012.
doi:10.1049/iet-map.2011.0309

12. Degiorgi, M., G. Tiberi, and A. Monorchio, "Wideband scattering through the use of the universal characteristic basis functions(UCBFs)," IEEE Int. Symp. on Antennas and Propagation and CNCUSNC/URSI Radio Science Meeting, 11-17, Jul. 2010.

13. Zhang, M. Y., Y. F. Sun, and Z. G. Wang, "Solutions of broadband RCS using the characteristic basis function method," IEEE MTTS International Wireless Symposium, 1-4, Mar. 2015.

14. Tsang, L., C. E. Mandt, and D. H. Ding, "Monte Carlo simulations of the extinction rate of dense media with randomly distributed dielectric spheres based on solution of Maxwell's equations," Optics Letters, Vol. 17, No. 5, 314-316, 1992.
doi:10.1364/OL.17.000314

15. Wang, Z. G., Y. F. Sun, and G. H. Wang, "Analysis of electromagnetic scattering from perfect electric conducting targets using improved characteristic basis function method and fast dipole method," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 7, 893-902, 2014.
doi:10.1080/09205071.2014.895425

16. Sun, Y. F., C. H. Chan, R. Mittra, and L. Tsang, "Characteristic basis function method for solving large problems arising in dense medium scattering," IEEE Antennas Propag. Soc. Int. Symp., 1068-1071, Columbus, Jun. 2003.