Vol. 57
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-10-19
Compact Microstrip Narrow Bandpass Filter with Good Selectivity and Wide Stopband Rejection for Ku-Band Applications
By
Progress In Electromagnetics Research Letters, Vol. 57, 55-59, 2015
Abstract
A new microstrip narrow bandpass filter with good selectivity and wide stopband rejection for Ku-band application is proposed in this letter. The characteristic of the triple-mode stub-loaded resonator has been investigated. The resonance frequencies of the degenerate modes can be adjusted easily to satisfy the bandwidth of the narrow bandpass filter. Two parallel-coupling feed structures with cross-coupling have been used to generate two transmission zeros at the lower and upper stopband, which can improve the filter selectivity. To validate the design theory, a new microstrip Ku-band narrow bandpass filter has been designed, fabricated, and measured. Simulation and experimental results are provided with good agreement.
Citation
Haibo Jiang, Yujie Wang, and Lin Wang, "Compact Microstrip Narrow Bandpass Filter with Good Selectivity and Wide Stopband Rejection for Ku-Band Applications," Progress In Electromagnetics Research Letters, Vol. 57, 55-59, 2015.
doi:10.2528/PIERL15080606
References

1. Zhao, G., Q. Z. Zhang, X. Lv, and H. J. Sun, "A Ku band waveguide bandpass filter with E-plane metallic diaphragm," IEEE International Conf. on Microw. and Millimeter Wave Techni., 875-877, 2010.

2. Jiang, S. L., Q. Chen, and Y. Fan, "A compact Ku-band filter based on substrate integrated circular cavity," IEEE International Conf. on Intelligent Signal Processing and Communication Systems, 1-3, 2010.

3. Guo, Z. Q., J. M. Zhou, and J. Zhou, "A LTCC-based Ku-band 3D bandpass filter using stepped-impedance hairpin resonators," IEEE International Conf. on Microw. and Millimeter Wave Techni., 1-4, 2012.

4. Li, Q. R., X. B. Guo, B. S. Cao, and X. Q. Zhang, "A high performance narrowband superconducting filter at Ku-band," Microw. and Optical Tech. Lett., Vol. 54, No. 6, 1514-1516, 2012.
doi:10.1002/mop.26816

5. Yamanaka, K., S. Masafumi, and S. Taira, "Ku-band HTS filters with narrow and wide bands for space communications," Physica. Section C, Vol. 426-431, Part 2, 1514-1516, 2012.

6. Zhu, W. S., J. R. Zhang, and M. X. Yu, "A novel Ku-band microstrip triple-mode filter using stub-loaded resonator," IEEE International Conf. on Electronics, Communications and Control, 1847-1849, 2011.

7. Min, J. K., H. J. Kim, Y. H. Kim, and H. S. Yu, "Design of a frequency tripler using a novel bandpass filter for Ku-band application," Microw. and Optical Tech. Lett., Vol. 48, No. 9, 1770-1773, 2006.
doi:10.1002/mop.21787

8. Peng, H., J. Zhao, and B. Wang, "Compact microstrip UWB bandpass filter with triple-notched bands and wide upper stopband," Progress In Electromagnetics Research, Vol. 144, 185-191, 2014.
doi:10.2528/PIER13120409

9. bozzetti, M., A. D’orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, and F. Renna, "Tapered photonic bandgap microstrip lowpass filters: Design and realization," IEE Proceedings Microwaves, Antennas and Propagation, Vol. 150, 459-462, 2003.
doi:10.1049/ip-map:20030542

10. Calo, G., A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, "Tunability of photonic band gap notch filter," IEEE Transaction on Nanotechnology, 273-284, 2008.
doi:10.1109/TNANO.2008.917848

11. Lee, J. R., J. H. Cho, and S.W. Yun, "New compact bandpass filter using microstrip λ/4 resonators with open stub inverter," IEEE Microw. Guided Wave Lett., Vol. 10, No. 12, 526-527, 2000.
doi:10.1109/75.895091