Vol. 45
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-12-16
Microwave Focusing Within Arbitrary Refractive Index Media Using Left-Handed Metamaterial Lenses
By
Progress In Electromagnetics Research M, Vol. 45, 51-58, 2016
Abstract
Left-handed metamaterial (LHM) lenses allow the focusing of microwave radiation at specific positions within a medium, depending on its refractive index. A suitable approach needs to consider the reflections between the LHM lens and the adjacent media. This work faces the challenge of focusing the microwave radiation within a medium with arbitrary positive refractive index and characteristic impedance using LHM lenses as imaging-forming systems. To find a right lens formula, a full wave method is presented in theory. The results we achieved show that the characteristic flat shape of conformal-four lens configuration has a spot size of 0.53 x 0.34λeff2 at -3 dB if the different media are perfectly matched. Otherwise, a noteworthy aberration affects the focusing, but it can be mitigated using a conformal circular LHM lens with a spot size of ~0.4 x 0.4λeff2 at -3 dB.
Citation
Luca Leggio, Ehsan Dadrasnia, and Omar de Varona, "Microwave Focusing Within Arbitrary Refractive Index Media Using Left-Handed Metamaterial Lenses," Progress In Electromagnetics Research M, Vol. 45, 51-58, 2016.
doi:10.2528/PIERM15072807
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-14, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

3. Garcia, N. and M. Nieto-Vesperinas, "Left-handed materials do not make a perfect lens," Physical Review Letters, Vol. 90, No. 22, 229903, 2003.
doi:10.1103/PhysRevLett.90.229903

4. Zhang, K.-K., H.-L. Luo, and S.-C. Wen, "Focal shift of paraxial gaussian beams in a left-handed material slab lens," Chinese Physics Letters, Vol. 27, No. 7, 4774-4784, 2010.

5. Kuhta, N. A., V. A. Podolskiy, and A. L. Efros, "Far field imaging by a planar lens: diffraction versus superresolution," Physical Review B, Vol. 76, 205102, 2007.
doi:10.1103/PhysRevB.76.205102

6. Kuhta, N. A., V. A. Podolskiy, and A. L. Efros, "Quantifying the limitations of far-field imaging by a left-handed planar lens," URSI General Assembly, Chicago, 2008.

7. Aydin, K. and E. Ozbay, "Left-handed metamaterial based superlensfor subwavelength imaging of electromagnetic waves," Applied Physics A, Vol. 87, No. 2, 137-141, 2007.
doi:10.1007/s00339-006-3817-4

8. Petrov, R. V., G. Srinivasan, M. I. Bichurin, and D. Viehland, "Three-dimensional left-handed material lens," Applied Physics Letters, Vol. 91, 104103, 2007.
doi:10.1063/1.2778753

9. Ozbay, E. and K. Aydin, "Negative refraction and subwavelength focusing using left-handed composite metamaterials," Proceedings SPIE, Metamaterials III, Lensing I, Vol. 6987, April 23, 2008.

10. Wang, G., Y. Gong, and H. J. Wang, "Schemes of microwave hyperthermia by using flat left-handed material lenses," Microwave and Optical Technology Let., Vol. 51, No. 7, 1738-1743, 2009.
doi:10.1002/mop.24449

11. Leggio, L., O. de Varona, and E. Dadrasnia, "A comparison between different schemes of microwave cancer hyperthermia treatment by means of left-handed metamaterial lenses," Progress In Electromagnetics Research, Vol. 150, 73-87, 2015.
doi:10.2528/PIER14101408

12. Tassin, P., I. Veretennicoff, and G. Van der Sande, "Veselago’s lens consisting of left-handed materials with arbitrary index of refraction," Optics Communications, Vol. 264, 130-134, 2006.
doi:10.1016/j.optcom.2006.02.013

13. Born, M. and E. Wolf, Principles of Optics, Seventh Ed., Cambridge University Press, 2002.

14. Zhou, J., T. Koschny, and C. M. Soukoulis, "An efficient way to reduce losses of left-handed metamaterials," Optics Express, Vol. 16, No. 15, 11147-11152, 2008.
doi:10.1364/OE.16.011147

15. Zhu, L., F. Meng, F. Zhang, J. Fu, Q. Wu, X. Ding, and J. L.-W. Li, "An ultra-low loss split ring resonator by suppressing the electric dipole moment," Progress In Electromagnetics Research, Vol. 137, 239-254, 2013.
doi:10.2528/PIER12121703

16. Fang, J., G. Yu, H.Wang, and W. Gang, "Study on near field target detection and imaging by using flat LHM lens," META08–Proceed. of the 2008 Intern. Workshop on Metamaterials, November 9-12, 2008.

17. Wang, G., J. Fang, and X. Dong, "Resolution of near-field microwave target detection and imaging by using flat LHM lens," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3534-3541, 2007.
doi:10.1109/TAP.2007.910365

18. Turpin, J. P., Q. Wu, D. H. Werner, B. Martin, M. Bray, and E. Lier, "Low cost and broadband dual-polarization metamaterial lens for directivity enhancement," IEEE Transactions on Antennas and Propagation, Vol. 60, 5717-5726, Dec. 2012.
doi:10.1109/TAP.2012.2214013

19. Meng, F. Y., Y. L. Lyu, K. Zhang, Q. Wu, and L. W. Li, "A detached zero index metamaterial lens for antenna gain enhancement," Progress In Electromagnetics Research, Vol. 132, 463-478, 2012.
doi:10.2528/PIER12082112

20. Zhang, X. and Z. Liu, "Superlenses to overcome the diffraction limit," Nature Materials, Vol. 7, 435-441, 2008.
doi:10.1038/nmat2141

21. Lan, L., W. Jiang, and Y. Ma, "Three dimensional subwavelength focus by a near-field plate lens," Applied Physics Letters, Vol. 102, No. 23, 231119, 2013.
doi:10.1063/1.4810004

22. Grbic, A., L. Jiang, and R. Merlin, "Near-field plates: Sub-diffraction focusing with patterned surfaces," Science, Vol. 320, No. 5875, 511-513, 2008.
doi:10.1126/science.1154753