Vol. 45
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-12-04
Electromagnetic Waves Attenuation in the Sandstones with Grains of Different Size at Imbibition and Drying
By
Progress In Electromagnetics Research M, Vol. 45, 9-16, 2016
Abstract
The results of experimental measurements of the complex dielectric permittivity (CDP) of powders of quartz granules with different sizes saturated with water and salt solution of weak concentration are given in the frequency band from 20 kHz to 1 GHz. It is shown that at values of saturation level from 0.6 to 0.9 the relaxation phenomena caused by interfacial polarization on the water-air bound can be observed. The result shows considerable reduction of attenuation in gradually saturated rocks, which allows for deeper sensing during georadar mapping. It is determined that in the dielectric relaxation band and at frequencies below it the hysteresis of the real part of the CDP and equivalent specific conductivity can be observed. Its character significantly depends on the sizes of granules. It is shown that the behavior of CDP and attenuation of an electromagnetic wave at frequencies from 0.1 to 10 MHz complicatedly depends on the sizes of granules, saturation level, salinity of the saturating solution and saturation history.
Citation
Anastasiya Sergeevna Lapina, and Pavel Petrovich Bobrov, "Electromagnetic Waves Attenuation in the Sandstones with Grains of Different Size at Imbibition and Drying," Progress In Electromagnetics Research M, Vol. 45, 9-16, 2016.
doi:10.2528/PIERM15072502
References

1. Bobrov, P. P., V. L. Mironov, and A. V. Repin, "Dielectric permittivity spectra of oil-water-saturated sandy-clayey rocks of different mineralogical compositions and relaxation properties of water in these rocks," Russian Geology and Geophysics, Vol. 56, No. 7, 1065-1073, 2015.
doi:10.1016/j.rgg.2015.06.007

2. Wagner, N., T. Bore, J.-C. Robinet, D. Coelho, F. Taillade, and S. Delepine-Lesoille, "Dielectric relaxation behavior of Callovo-Oxfordian clay rock: A hydraulic-mechanical-electromagnetic coupling approach," J. Geophys. Res. Solid Earth, Vol. 118, 4729-4744, 2013.
doi:10.1002/jgrb.50343

3. Anderson, W. G., "Wettability literature survey - Part 2: Wettability measurement," Journal of Petroleum Technology, 1246-1262, 1986.

4. Longeron, D. G., M. J. Argaud, and J. P. Feraud, "Effect of overburden pressure and the nature and microscopic distribution of fluids on electrical properties of rock samples," SPE Format, Eval. 4, 194-202, 1989.

5. Knight, R. J. and A. Nur, "Geometrical effects in the dielectric response of partially saturated sandstones," Log Anal., Vol. 28, 513-519, 1987.

6. Knight, R., "Hysteresis in the electrical resistivity of partially saturated sandstones," Geophysics, Vol. 56, No. 12, 2139-2147, 1991.
doi:10.1190/1.1443028

7. Plug, W. J., E. C. Slob, J. Bruining, and L. M. M. Tirado, "Simultaneous measurement of hysteresis in capillary pressure and electric permittivity for multiphase flow through porous media," Geophysics, Vol. 72, A41-A45, 2007.
doi:10.1190/1.2714684

8. Belyaeva, T. A., P. P. Bobrov, O. V. Kondratyeva, and A. V. Repin, "Dielectric properties of capillary-meniscus soil water," Earth Research from Space, No. 3, 55-64, 2011 (in Russian).

9. Kavian, M., E. C. Slob, and W. A. Mulder, "Measured electric responses of unconsolidated layered and brine-saturated sand and sand-clay packs under continuous fluid flow conditions," Journal of Applied Geophysics, Vol. 80, 83-90, 2012.
doi:10.1016/j.jappgeo.2012.01.012

10. Bobrov, P. P., A. V. Repin, and O. V. Rodionova, "Wideband frequency domain method of soil dielectric properties measurements," IEEE Trans. on Geoscience and Remote Sensing, Vol. 53, No. 5, 2366-2372, 2015.
doi:10.1109/TGRS.2014.2359092

11. Bobrov, P. P., A. S. Lapina, and A. V. Repin, "Effect of the rock/water/air interaction on the complex dielectric permittivity and electromagnetic waves attenuation in water-saturated sandstones," PIERS Proceedings, 1877-1880, Prague, July 6-9, 2015.

12. Mavko, G., T. Mukerji, and J. Dvorkin, "Tools for seismic analysis of porous media," The Rock Physics Handbook, 2nd Edition, Cambridge University Press, Cambridge CB2 8RU, UK, 2009.