Vol. 56
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-09-24
Design of Tri-Band Quasi-Self-Complementary Antenna for WLAN and WiMAX Applications
By
Progress In Electromagnetics Research Letters, Vol. 56, 89-94, 2015
Abstract
In this article, a novel printed quasi-self-complementary antenna with tri-band characteristic is presented for WLAN and WiMAX applications. A triangular quasi-self-complementary structure, which consists of a radiating patch and its counterpart slot on the ground, is employed to produce two operating bands centered at about 2.5 and 5.2 GHz. Then, by introducing a rectangular slit cut from the patch and its complementary mirror image strip inserted into the slot, an additional resonance at 3.5 GHz is excited and tri-band operation can be realized. A prototype of the proposed antenna has been successfully fabricated and measured. Both the simulated and measured results are obtained to demonstrate the promising performance required for practical applications. Based on the results, it is shown that 10-dB impedance bandwidths of the proposed antenna are 510 MHz (2.25-2.76 GHz), 330 MHz (3.38-3.71 GHz), and 770 MHz (5.1-5.87 GHz), respectively. Also, nearly omnidirectional radiation patterns and acceptable antenna gains can be achieved over the three operating bands.
Citation
Hui Li, Le Kang, Xin Huai Wang, and Ying-Zeng Yin, "Design of Tri-Band Quasi-Self-Complementary Antenna for WLAN and WiMAX Applications," Progress In Electromagnetics Research Letters, Vol. 56, 89-94, 2015.
doi:10.2528/PIERL15071708
References

1. Wen, R. H., "Compact planar triple-band monopole antennas based on a single-loop resonator," Electron. Lett., Vol. 49, 916-918, 2013.
doi:10.1049/el.2013.1915

2. Basaran, S. C., U. Olgun, and K. Sertel, "Multiband monopole antenna with complementary splitring resonators for WLAN and WiMAX applications," Electron. Lett., Vol. 49, 636-638, 2013.
doi:10.1049/el.2013.0357

3. Liu, W. C., C. M. Wu, and Y. Dai, "Design of triple-frequency microstrip-fed monopole antenna using defected ground structure," IEEE Trans. Antennas Propag., Vol. 59, 2457-2463, 2011.
doi:10.1109/TAP.2011.2152315

4. Ren, X. S., S. Gao, and Y. Z. Yin, "Compact tri-band monopole antenna with hybrid strips for WLAN/WiMAX applications," Microwave Opt. Technol. Lett., Vol. 57, 94-99, 2015.
doi:10.1002/mop.28785

5. Mushiake, Y., "Self-complementary antennas," IEEE Antennas Propag. Mag., Vol. 34, 23-29, 1992.
doi:10.1109/74.180638

6. Mushiake, Y., "A report on Japanese development of antennas: From the Yagi-Uda antenna to self-complementary antennas," IEEE Antennas Propag. Mag., Vol. 46, 47-60, 2004.
doi:10.1109/MAP.2004.1373999

7. Guo, L., S. Wang, Y. Gao, Z. Wang, X. Chen, and C. G. Parini, "Study of printed quasi-self-complementary antenna for ultra-wideband systems," Electron. Lett., Vol. 44, 511-512, 2008.
doi:10.1049/el:20083612

8. Zou, J. Z., L. Liu, and S. W. Cheung, "Compact quasi-self-complementary antenna for portable UWB applications," Microwave Opt. Technol. Lett., Vol. 56, 1317-1323, 2014.
doi:10.1002/mop.28317

9. Pan, C.-Y., K.-Y. Chiu, J.-J. Jhong, and J.-Y. Jan, "Printed arrow-shaped self-complementary antenna for WLAN/WiMAX applications," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2-3, 192-202, 2012.
doi:10.1163/156939312800030875

10. Lin, C. C., C. Y. Huang, and G. H. Chen, "Obtuse pie-shaped quasi-self-complementary antenna for WLAN applications," IEEE Antennas Wireless Propag. Lett., Vol. 12, 353-355, 2013.
doi:10.1109/LAWP.2013.2250242

11. Lin, C. C., C. Y. Huang, G. H. Chen, and C. H. Chiu, "Rectangular quasi-self-complementary antenna for WLAN applications," Microwave Opt. Technol. Lett., Vol. 56, 2179-2182, 2014.
doi:10.1002/mop.28532