Vol. 43
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-08-09
The Fractional Fourier Transform of Hypergeometric-Gauss Beams through the Hard Edge Aperture
By
Progress In Electromagnetics Research M, Vol. 43, 31-38, 2015
Abstract
Based on the Collins integral formula and Lohmann optical system, we expand the hard edge aperture into complex Gauss function and derive an approximate analytic expression of intensity distribution theoretically for Hypergeometric-Gauss beams through the fractional Fourier transform (FRT) optical systems with hard edge aperture. The influences of FRT order, aperture size and other optical parameters on the light intensity distribution of Hypergeometric-Gauss beams passing through the FRT optical systems are discussed in detail. The results show that the FRT is an excellent beam-shaping method.
Citation
Jun Qu, Mengyao Fang, Ji Peng, and Wei Huang, "The Fractional Fourier Transform of Hypergeometric-Gauss Beams through the Hard Edge Aperture," Progress In Electromagnetics Research M, Vol. 43, 31-38, 2015.
doi:10.2528/PIERM15070705
References

1. Renn, M. J., D. Montgomery, O. Vdovin, et al. "Laser-guided atoms in hollow-core optical fibers," Physical Review Letters, Vol. 75, 3253-3256, 1995.
doi:10.1103/PhysRevLett.75.3253

2. Cai, Y., X. Lu, and Q. Lin, "Hollow Gaussian beams and their propagation properties," Optics Letters, Vol. 28, 1084-1086, 2003.
doi:10.1364/OL.28.001084

3. Paterson, L., M. P. MacDonald, J. Arlt, et al. "Controlled rotation of optically trapped microscopic particles," Science, Vol. 292, 912-914, 2001.
doi:10.1126/science.1058591

4. MIshra, S. and S. K. Mishra, "Focusing of dark hollow Gaussian electromagnetic beams in a plasma with relativistic-ponderomotive regime," Progress In Electromagnetics Research B, Vol. 16, 291-309, 2009.
doi:10.2528/PIERB09061705

5. Alkelly, A. A., H. Al-Nadary, and I. A. Alhijry, "The intensity distribution of hollow Gaussian beams focused by a lens with spherical aberration," Optics Communications, Vol. 284, 322-329, 2011.
doi:10.1016/j.optcom.2010.08.040

6. Sodha, M. S., S. K. Mishra, and S. Misra, "Focusing of a dark hollow Gaussian electromagnetic beam in a magnetoplasma," Journal of Plasma Physics, Vol. 75, 731-748, 2009.
doi:10.1017/S0022377809007922

7. Kotlyar, V. V., R. V. Skidanov, S. N. Khonina, et al. "Hypergeometric modes," Optics Letters, Vol. 32, 742-744, 2007.
doi:10.1364/OL.32.000742

8. Karimi, E., G. Zito, B. Piccirillo, et al. "Hypergeometric-gaussian mode," Optics Letters, Vol. 32, 3053-3055, 2007.
doi:10.1364/OL.32.003053

9. Ozaktas, H. M. and D. Mendlovic, "Fractional Fourier transforms and their optical implementation. II," Journal of the Optical Society of America A, Vol. 10, 2522-2531, 1993.
doi:10.1364/JOSAA.10.002522

10. Lohmann, A. W., "Image rotation, Wigner rotation, and the fractional Fourier transform," Journal of the Optical Society of America A, Vol. 10, 2181-2186, 1993.
doi:10.1364/JOSAA.10.002181

11. Mendlovic, D., H. M. Ozaktas, and A. W. Lohmann, "Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform," Applied Optics, Vol. 33, 6188-6193, 1994.
doi:10.1364/AO.33.006188

12. Zhang, Y., B. Z. Dong, B. Y. Gu, et al. "Beam shaping in the fractional Fourier transform domain," Journal of the Optical Society of America A, Vol. 15, 1114-1120, 1998.
doi:10.1364/JOSAA.15.001114

13. Wang, F., Y. Cai, and Q. Lin, "Experimental observation of truncated fractional Fourier transform for a partially coherent Gaussian Schell-model beam," Journal of the Optical Society of America A, Vol. 25, 2001-2010, 2008.
doi:10.1364/JOSAA.25.002001

14. Zhou, G., R. Chen, and X. Chu, "Fractional Fourier transform of Airy beams," Applied Physics B, Vol. 109, 549-556, 2012.
doi:10.1007/s00340-012-5117-3

15. Zhou, G., "Fractional Fourier transform of a higher-order cosh --- Gaussian beam," Journal of Modern Optics, Vol. 56, 886-892, 2009.
doi:10.1080/09500340902783816

16. Namias, V., "The fractional order Fourier transform and its application to quantum mechanics," IMA Journal of Applied Mathematics, Vol. 25, 241-265, 1980.
doi:10.1093/imamat/25.3.241

17. Erdélyi, A. and H. Bateman, "Tables of integral transforms,", 1954.

18. Wen, J. J. and M. A. Breazeale, "A diffraction beam field expressed as the superposition of Gaussian beams," The Journal of the Acoustical Society of America, Vol. 83, 1752-1756, 1988.
doi:10.1121/1.396508

19. Ding, D. and X. Liu, "Approximate description for Bessel, Bessel-Gauss, and Gaussian beams with finite aperture," Journal of Optical Society of America A, 1286-1293, 1999.
doi:10.1364/JOSAA.16.001286

20. Cai, Y. and L. Hu, "Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams through an apertured astigmatic optical system," Optics Letters, Vol. 31, 685-688, 2006.
doi:10.1364/OL.31.000685

21. Zheng, C., "Fractional Fourier transform for a hollow Gaussian beam," Physics Letters A, Vol. 355, 156-161, 2006.
doi:10.1016/j.physleta.2006.02.025