Vol. 44
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-10-06
Discriminating the Frequency Dispersive Scattering Centers of Complex Targets by Wideband Group Delay Analysis
By
Progress In Electromagnetics Research M, Vol. 44, 31-38, 2015
Abstract
Waveguide geometry is one of the most critical frequency Dispersive Scattering Centres (DSCs) in actual complex radar targets. Because of the occurrence of nonlinear dispersive scattering phase or range extension phenomena the nearby scatterers may be hidden in such cases. So, degradation of spatial resolution occurs in corresponding range profiles. According to a relatively simple parametric scattering model, a computationally efficient technique is introduced to analyze the complex range profiles including both backscattering field intensity and phase. The group delay of each scatterer is used as a criterion for discriminating the dispersive and non-dispersive ones. The wideband measured data samples are used for evaluating the technique, and the comparison is performed relative to Fourier-based results.
Citation
Hamid Heidar, and Rahman Sofiani, "Discriminating the Frequency Dispersive Scattering Centers of Complex Targets by Wideband Group Delay Analysis," Progress In Electromagnetics Research M, Vol. 44, 31-38, 2015.
doi:10.2528/PIERM15070101
References

1. Miller, E. K., "Model-based parameter estimation in electromagnetics: Part I. Background and theoretical development ," IEEE Antennas and Propagation Magazine, Vol. 40, No. 1, 42-52, Feb. 1998.
doi:10.1109/74.667326

2. Miller, E. K., "Model-based parameter estimation in electromagnetics: Part II. Applications to EM observables," IEEE Antennas and Propagation Magazine, Vol. 40, No. 2, 51-65, Apr. 1998.
doi:10.1109/74.683542

3. Miller, E. K., "Model-based parameter estimation in electromagnetics: Part III. Applications to EM integral equations," IEEE Antennas and Propagation Magazine, Vol. 40, No. 3, 49-66, Jun. 1998.
doi:10.1109/74.706084

4. Hurst, M. P. and R. Mittra, "Scattering centre analysis via Prony‘s method," IEEE Trans. Antennas Propag., Vol. 35, 986-988, Aug. 1987.
doi:10.1109/TAP.1987.1144210

5. Potter, L. C., D.-M. Chiang, R. Carriere, and M. J. Gerry, "A GTD-based parametric model for radar scattering," IEEE Trans. Antennas Propag., Vol. 43, 1058-1067, Oct. 1995.

6. Trintinalia, L. C. and H. Ling, "Superresolved time-frequency parametrization of electromagnetic scattering mechanisms due to structural dispersion," Microwave and Optical Technology Letters, Vol. 10, No. 2, Oct. 1995.

7. McClure, M., R. C. Qiu, and L. Carin, "On the superresolution identification of observables from swept-frequency scattering data," IEEE Trans. Antennas Propag., Vol. 45, No. 4, 631-641, Apr. 1997.
doi:10.1109/8.564089

8. Heidar, H. and A. Tavakoli, "Highly dispersive scattering centre analysis using an enhanced parametric model," IET Radar, Sonar & Navigation, Vol. 5, No. 8, 895-901, Oct. 2011.
doi:10.1049/iet-rsn.2011.0134

9. Moore, J. and H. Ling, "Super-resolved time-frequency analysis of wideband backscattered data," IEEE Trans. Antennas Propag., Vol. 43, No. 6, 623-626, Jun. 1995.
doi:10.1109/8.387179

10. Zhou, J., H. Zhao, Z. Shi, and Q. Fu, "Global scattering centre centre model extraction of radar targets based on wideband measurements," IEEE Trans. Antennas Propag., Vol. 56, No. 7, 2051-2060, Jul. 2008.
doi:10.1109/TAP.2008.924698

11. Heidar, H. and A. Tavakoli, "Analysis of the radar range extension in open-ended waveguide type geometries," IEICE Electronics Express, Vol. 8, No. 9, 663-669, May 2011.
doi:10.1587/elex.8.663

12. Burkholder, R. J. and P. H. Pathak, "Analysis of EM penetration into and scattering by electrically large open waveguide cavities using Gaussian beam shooting," Proc. IEEE, Vol. 79, No. 10, Oct. 1991.

13. Rizzi, P. A., Microwave Engineering Passive Circuits, Prentice-Hall, 1988.

14. Heidar, H. and A. Tavakoli, "Wideband dispersion analysis of waveguide geometries using finite sampled data," Progress In Electromagnetics Research M, Vol. 16, 235-244, 2011.
doi:10.2528/PIERM11010103

15. Rihaczek, A. W. and S. J. Hershkowitz, Theory and Practice of Radar Target Identification, Artech House, 2000.

16. Carriere, R. and R. Moses, "High resolution radar target modeling using a modified prony estimator," IEEE Trans. Antennas Propag., Vol. 40, No. 1, 13-18, Jan. 1992.
doi:10.1109/8.123348

17. Sarkar, T. K., D. D. Weiner, and V. K. Jain, "Some mathematical considerations in dealing with the inverse problem," IEEE Trans. Antennas Propag., Vol. 19, No. 4, 373-379, Mar. 1981.
doi:10.1109/TAP.1981.1142573