Vol. 55
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-08-15
Design of a Low-Profile Antenna by Using Orthogonal Parasitic Meandered Monopoles
By
Progress In Electromagnetics Research Letters, Vol. 55, 23-29, 2015
Abstract
In this paper, we present the design of a low-profile antenna consisting of two orthogonal parasitic meandered monopoles excited by the near-filed coupling with a feeding bow-tie. The two parasitic radiators and the driven element are placed on two different faces of the same dielectric substrate and a coaxial probe excites the bow-tie through a metallic ground plane. In this way, the antenna has compact dimensions of 21×10.5×1.6 mm30/6×λ0/12×λ0/75, excluding the ground plane) and exhibits a good impedance matching in the 2.4-2.485 GHz Wi-Fi band with an overall efficiency around 50%.
Citation
Mirko Barbuto, Fabrizio Trotta, Filiberto Bilotti, and Alessandro Toscano, "Design of a Low-Profile Antenna by Using Orthogonal Parasitic Meandered Monopoles," Progress In Electromagnetics Research Letters, Vol. 55, 23-29, 2015.
doi:10.2528/PIERL15061903
References

1. Puente-Baliarda, C., J. Romeu, R. Pous, and A. Cardama, "On the behavior of the Sierpinski multiband fractal antenna," IEEE Trans. Antennas Propag., Vol. 46, 517-528, Apr. 1998.
doi:10.1109/8.664115

2. Puente-Baliarda, C., J. Romeu, and A. Cardama, "The Koch monopole: A small fractal antenna," IEEE Trans. Antennas Propag., Vol. 48, 1773-1781, Nov. 2000.
doi:10.1109/8.900236

3. Best, S. R., "On the performnace properties of the Koch fractal and other bent wire monopoles," IEEE Trans. Antennas Propag., Vol. 51, 1292-1300, Jun. 2003.
doi:10.1109/TAP.2003.812257

4. Pan, S. C. and K. L. Wong, "Dual frequency triangular microstrip antenna with a shorting pin," IEEE Trans. Antennas Propag., 1889-1891, Dec. 1997.

5. Barbuto, M., F. Bilotti, and A. Toscano, "Design of a multifunctional SRR-loaded printed monopole antenna," Int. J. RF Microw. CAE, Vol. 22, 552-557, 2012.
doi:10.1002/mmce.20645

6. Hansen, R. C., "Fundamental limitations in antennas," Proceedings of the IEEE, Vol. 69, 170-182, Feb. 1981.
doi:10.1109/PROC.1981.11950

7. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. Antennas Propag., Vol. 44, 672-676, May 1996.
doi:10.1109/8.496253

8. Collin, R. and S. Rothschild, "Evaluation of antenna Q," IEEE Trans. Antennas Propag., Vol. 12, 23-27, Jan. 1964.
doi:10.1109/TAP.1964.1138151

9. Jin, P. and R. W. Ziolkowski, "Multiband extensions of the electrically small near field resonant parasitic Z antenna," IEEE Trans. Antennas Propag., Vol. 4, 1016-1025, Aug. 2010.

10. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "A combined bandpass filter and polarization transformer for horn antennas," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1065-1068, 2013.
doi:10.1109/LAWP.2013.2280151

11. Barbuto, M., F. Bilotti, and A. Toscano, "Novel waveguide components based on complementary electrically small resonators," Photonic Nanostruct., Vol. 12, 284-290, 2014.
doi:10.1016/j.photonics.2014.03.005

12. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "Horn antennas with integrated notch filters," IEEE Trans. Antennas Propag., Vol. 63, 781-785, 2015.
doi:10.1109/TAP.2014.2378269

13. Zhu, J., M. A. Antoniades, and G. V. Eleftheriades, "A compact tri-band monopole antenna with single-cell metamaterial loading," IEEE Trans. Antennas Propag., Vol. 58, 1031-1038, Apr. 2010.
doi:10.1109/TAP.2010.2041317

14. Jin, P. and R. W. Ziolkowski, "Multi-frequency, linear and circular polarized, metamaterial-inspired, near-field resonant parasitic antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1446-1459, May 2011.
doi:10.1109/TAP.2011.2123053

15. Jin, P., C. C. Lin, and R. W. Ziolkowski, "Multifunctional, electrically small, planar near-field resonant parasitic antennas," IEEE Antennas Wireless Propag. Lett., Vol. 11, 200-204, 2012.

16. Barbuto, M., A. Monti, F. Bilotti, and A. Toscano, "Design of a non-foster actively loaded SRR and application in metamaterial-inspired components," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1219-1227, Mar. 2013.
doi:10.1109/TAP.2012.2228621

17. Erentok, A. and R. W. Ziolkowski, "Metamaterial-inspired efficient electrically small antenna," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 691-707, Mar. 2008.
doi:10.1109/TAP.2008.916949

18. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "Varying the operation bandwidth of metamaterial-inspired filtering modules for horn antennas," Progress In Electromagnetics Research C, Vol. 58, 61-68, 2015.
doi:10.2528/PIERC15051402

19. Du, G.-H., X. Tang, and F. Xiao, "Tri-band metamaterials-inspired monopole antenna with modified S-shaped resonator," Progress In Electromagnetics Research Letters, Vol. 23, 39-48, 2011.
doi:10.2528/PIERL11031515

20. Das, A., S. Dhar, and B. Gupta, "Lumped circuit model analysis of meander line antennas," Proceedings of MMS 2011, 21-24, 2011.

21. Olaode, O. O., W. D. Palmer, and W. T. Joines, "Characterization of meander dipole antennas with a geometry-based, frequency-independent lumped element model," IEEE Antennas Wireless Propag. Lett., Vol. 11, 346-349, 2012.
doi:10.1109/LAWP.2012.2191380

22. Hosono, R., N. Guan, H. Tayama, and H. Furuya, "An equivalent circuit model for meander-line monopole antenna attached to metallic plate," Proceedings of ISAP 2012, 1421-1424, 2012.

23. Barbuto, M., A. Alu, F. Bilotti, A. Toscano, and L. Vegni, "Characteristic impedance of a microstrip line with a dielectric overlay," COMPEL --- The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 32, No. 6, 1855-1867, 2013.
doi:10.1108/COMPEL-10-2012-0283

24. CST Studio Suite 2014, CST Computer Simulation Technology AG, Darmstadt, Germany [Online], available: http://www.cst.com.