Vol. 55
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-08-19
A Novel Polarization Independent Chipless RFID Tag Using Multiple Resonators
By
Progress In Electromagnetics Research Letters, Vol. 55, 61-66, 2015
Abstract
A novel polarization independent RFID tag employing multiple resonators is proposed. The prototype of the tag is fabricated on a low-cost substrate of dielectric constant 4.4 and loss tangent 0.02. Designing a reader for chipless RFID is a hard task since both the polarization and operating frequency agility have to be implemented. The new tag design proposed in this paper is polarization independent, making the design of the reader easier. A prototype of a 3 bit data encoded tag is demonstrated using single structure which can be extended to any order by cascading. This new design is experimentally validated in the frequency domain using monostatic measurement with magnitude response to decode the information.
Citation
Das Laila, Riny Thomas, Chakkanattu Nijas, and Pezholil Mohanan, "A Novel Polarization Independent Chipless RFID Tag Using Multiple Resonators," Progress In Electromagnetics Research Letters, Vol. 55, 61-66, 2015.
doi:10.2528/PIERL15061004
References

1. Hartmann, C. S., "A global SAW ID tag with large data capacity," Proc. IEEE Ultrason. Symp., Vol. 1, 65-69, Munich, Germany, Oct. 2002.

2. Nair, R., E. Perret, and S. Tedjini, "Chipless RFID based on group delay encoding," IEEE Int. Conf. on RFID-Technologies and Applications, 214-218, Sitges, Spain, Sep. 15-16, 2011.

3. Gupta, S., B. Nikfal, and C. Caloz, "Chipless RFID system based group delay engineered dispersive delay structures," IEEE Antennas Propag. Lett., Vol. 10, 1366-1368, 2011.
doi:10.1109/LAWP.2011.2178058

4. Preradovic, S., I. Balbin, N. C. Karmakar, and G. F. Swiegers, "Multiresonator-based chipless RFID system for low-cost item tracking," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 5, 1411-1419, May 2009.
doi:10.1109/TMTT.2009.2017323

5. Chamarti, A. and K. Varahramyan, "Transmission delay line based ID generation circuit for RFID applications," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 11, 588-590, Nov. 2006.
doi:10.1109/LMWC.2006.884897

6. Mandel, C., M. Schussler, M. Maasch, and R. Jakoby, "A novel passive phase modulator based on lh delay lines for chipless microwave RFID applications," IEEE MTT-S Int. Microw. Wireless Sens., Local Positioning, RFID, Workshop, 1-4, 2009.
doi:10.1109/IMWS2.2009.5307891

7. Nair, R., E. Perret, and S. Tedjini, "Temporal multi-frequency encoding technique for chipless RFID applications," IEEE MTT-S Int. Microw. Symp. Dig., 1-3, 2012.

8. Shrestha, S., M. Balachandran, M. Agarwal, V. Phoha, and K. Varahramyan, "A chipless RFID sensor system for cyber centric monitoring applications," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 5, 1303-1309, May 2009.
doi:10.1109/TMTT.2009.2017298

9. Zheng, L., S. Rodriguez, L. Zhang, B. Shao, and L. Zheng, "Design and implementation of a fully reconfigurable chipless RFID tag using inkjet printing technology," IEEE Int. Circuits Syst. Symp., 1524-1527, 2008.

10. Ramos, A., D. Girbau, A. Lazaro, and S. Rima, "IR-UWB radar system and tag design for time-coded chipless RFID," EUCAP, 2491-2494, 2012.

11. Balbin, I. and N. Karmakar, "Phase-encoded chipless RFID transponder for large-scale low-cost applications," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 8, 509-511, Aug. 2009.
doi:10.1109/LMWC.2009.2024840

12. Jalaly, I. and I. Robertson, "RF barcodes using multiple frequency bands," IEEE MTT-S Int. Microw. Symp. Dig., 1-4, 2005.

13. McVay, J., A. Hoorfar, and N. Engheta, "Theory and experiments on Peano and Hilbert curve RFID tags," Proc. SPIE, Vol. 6248, Artical ID 624808, May 2006.

14. Vena, A., E. Perret, and S. Tedjini, "Chipless RFID tag using hybrid coding technique," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3356-3364, Dec. 2011.
doi:10.1109/TMTT.2011.2171001

15. Vena, A., E. Perret, and S. Tedjini, "A fully printable chipless RFID tagwith detuning correction technique," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 4, 209-211, Apr. 2012.
doi:10.1109/LMWC.2012.2188785

16. Vena, A., E. Perret, and S. Tedjini, "High capacity chipless RFID tag insensitive to the polarization," IEEE Trans. Antennas Propag., Vol. 60, No. 10, 4509-4515, Oct. 2012.
doi:10.1109/TAP.2012.2207347

17. Preradovic, S. and N. Karmakar, "Design of fully printable planar chipless RFID transponder with 35-bit data capacity," Eur. Microw. Conf., 13-16, 2009.

18. Jalaly, I. and I. Robertson, "RF barcodes using multiple frequency bands," IEEE MTT-S Int. Microw. Symp. Dig., 1-4, 2005.

19. Vena, A., E. Perret, and S. Tedjini, "Chipless RFID tag using hybrid coding technique," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3356-3364, Dec. 2011; C. J. Kaufman, Rocky Mountain Research Lab, Boulder, CO, Private Communication, May 1995.
doi:10.1109/TMTT.2011.2171001