Vol. 44
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-10-01
A Photomixer Driven Terahertz Dipole Antenna with High Input Resistance and Gain
By
Progress In Electromagnetics Research M, Vol. 44, 13-20, 2015
Abstract
A terahertz (THz) antenna is proposed that offers high input resistance and gain in the presence of an electrically thick GaAs substrate. The antenna is centrally fed using two vertical probes connected to a photomixer on a thin low temperature grown gallium arsenide (LTG-GaAs) film which is supported by the GaAs substrate. An input impedance of ~3.3 kΩ has been achieved using a dipole antenna that is printed on a thin dielectric slab, and isolated from the supporting substrate using a metal ground plane. A square aperture has been introduced to facilitate the illumination of the photomixer with two laser beams. Furthermore, a frequency selective surface (FSS) has been incorporated in the configuration, which results in a broadside gain of ~19 dBi at a resonance frequency of 0.97 THz.
Citation
Wenfei Yin, Kenneth Kennedy, Jayanta Sarma, Richard A. Hogg, and Salam Khamas, "A Photomixer Driven Terahertz Dipole Antenna with High Input Resistance and Gain," Progress In Electromagnetics Research M, Vol. 44, 13-20, 2015.
doi:10.2528/PIERM15052902
References

1. Jacob, M., S. Priebe, C. Jastrow, T. Kleine-Ostmann, T. Schrader, and T. Kürner, "An overview of ongoing activities in the field of channel modeling, spectrum allocation and standardization for mm-wave and THz indoor communications," IEEE Globecom Workshops, 1-6, Honolulu, USA, Dec. 2009.

2. Wolf, M. and D. Kress, "Short-range wireless infrared transmission: The link bugdet compared to RF," IEEE Wireless Communications, Vol. 10, 8-14, Apr. 2003.
doi:10.1109/MWC.2003.1196397

3. Siegel, P. H., "Terahertz technology," IEEE Trans. Microw. Theory Tech., Vol. 50, 910-928, Mar. 2002.
doi:10.1109/22.989974

4. Kleine-Ostman, T. and T. Nagatsuma, "A review on terahertz communications research," J. Infrared Milli. Terahz Waves, Vol. 32, 143-171, Feb. 2011.
doi:10.1007/s10762-010-9758-1

5. Gregory, I. S., C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, "Optimization of photomixers and antennas for continuous-wave terahertz emission," IEEE J. Quantum Electron., Vol. 41, 717-728, May 2005.
doi:10.1109/JQE.2005.844471

6. Brewitt-Taylor, C. R., D. J. Gunton, and H. D. Rees, "Planar antennas on a dielectric surface," Electron. Lett., Vol. 12, 729-931, 1981.
doi:10.1049/el:19810512

7. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, 2005.

8. Andres-Garcia, B., L. E. Garcia-Munoz, D. Segovia-Vargas, I. Camara-Mayorga, and R. Gusten, "Ultra-wideband antenna excited by a photomixer for terahertz band," Progress In Electromagnetics Research, Vol. 114, 1-15, 2011.
doi:10.2528/PIER11012513

9. Gregory, I. S., W. R. Tribe, B. E. Cole, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, "Resonant dipole antennas for continuous-wave terahertz photomixers," Appl. Phys. Lett., Vol. 85, 1622-1624, Aug. 2004.
doi:10.1063/1.1789244

10. Ryu, H. C., S. I. Kim, M. H. Kwak, K. Y. Kang, and S. O. Park, "A folded dipole antenna having extremely high input impedance for continuous-wave terahertz power enhancement," 33rd Conference on IRMMW-THz, 1-2, Sep. 2008.

11. Han, K., T. K. Nguyen, I. Park, and H. Han, "Terahertz Yagi-Uda antenna for high input resistance," J. Infrared Milli. Terahz Waves, Vol. 31, 441-454, Apr. 2010.

12. Woo, I., T. K. Nguyen, H. Han, H. Lim, and I. Park, "Four-leaf-clover shaped antenna for a THz photomixer," Opt. Express, Vol. 18, 18532-18542, Aug. 2010.
doi:10.1364/OE.18.018532

13. Nguyen, T. K., H. Han, and I. Park, "Full-wavelength dipole antenna on a hybrid GaAs membrane and Si lens for a terahertz photomixer," J. Infrared Milli. Terahz Waves, Vol. 33, 333-347, Feb. 2012.
doi:10.1007/s10762-012-9876-z

14. Nguyen, T. K., T. A. Ho, I. Park, and H. Han, "Full-wavelength dipole antenna on a GaAs membrane covered by a frequency selective surface for a terahertz photomixer," Progress In Electromagnetics Research, Vol. 131, 441-455, 2012.
doi:10.2528/PIER12082101

15. Zhu, N. and R. W. Ziolkowski, "Photoconductive THz antenna designs with high radiation efficiency, high directivity, and high aperture efficiency," IEEE Trans. on THz Sci. Tech., Vol. 3, 721-730, Nov. 2013.
doi:10.1109/TTHZ.2013.2285568

16. Montero-de-Paz, J., E. Ugarte-Muñoz, L. E. García-Muñoz, I. C. Mayorga, and D. Segovia-Vargas, "Meanderdipole antenna to increase CW THz photomixing emitted power," IEEE Trans. on Antennas Propgat., Vol. 62, 4868-4872, Sep. 2014.
doi:10.1109/TAP.2014.2346708

17. Rana, E. and N. G. Alexopoulos, "Current distribution and input impedance of printed dipoles," IEEE Trans. on Antennas Propgat., Vol. 29, 99-105, Jan. 1981.
doi:10.1109/TAP.1981.1142536

18. CST Reference Manual, Darmstadt, Germany, Computer Simulation Technology, 2015.

19. Duffy, S. M., S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, "Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power," IEEE Trans. Microw. Theory Tech., Vol. 49, 1032-1038, Jun. 2001.
doi:10.1109/22.925487

20. Lee, Y. J., J. Yeo, R. Mittra, Y. Lee, and W. S. Park, "Design of high directivity electromagnetic bandgap (EBG) resonator antenna using a frequency selective surface (FSS) superstrate," Microw. Opt. Technol. Lett., Vol. 43, 462-467, Dec. 2004.
doi:10.1002/mop.20502

21. Llombart, N., G. Chattopadhyay, A. Skalare, and I. Mehdi, "Novel terahertz antenna based on silicon lens fed by a leaky wave enhanced waveguide," IEEE Trans. on Antennas Propgat., Vol. 59, 2160-2168, Jun. 2011.
doi:10.1109/TAP.2011.2143663

22. Van der Vorst, M. J. M., P. J. I. de Maagt, and M. H. A. Herben, "Effects of internal reflections on the radiation properties and input admittance of integrated lens antennas," IEEE Trans. Microw. Theory Tech., Vol. 47, 1696-1704, Sep. 1999.
doi:10.1109/22.788611

23. Mackenzie, K. D., D. J. Johnson, M. W. DeVre, R. J. Westerman, and B. H. Reelfs, "Stress control of Si-based PECVD dielectrics," 207th Electrochemical Society Meeting, 148-159, PV2005-01, May 2005.

24. Azzam Yasseen, A., J. D. Cawley, and M. Mehregany, "Thick glass film technology for polysilicon surface micromachining," IEEE J. of Microelectromechanical Systems, Vol. 8, 172-179, Jun. 1999.
doi:10.1109/84.767113