Vol. 55
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-08-23
High Selectivity Balanced Bandpass Filter with Tunable Bandwidth Using Stub-Loaded Resonator
By
Progress In Electromagnetics Research Letters, Vol. 55, 89-95, 2015
Abstract
A new balanced bandpass filter (BPF) with tunable bandwidth using tri-mode stub-loaded resonators is proposed. To tune the differential-mode bandwidth, the two even-mode resonance frequencies and two transmission zeros (TZs) are tuned while the odd-mode resonance frequency keeps unchanged. To realize high selectivity for differential mode, another two TZs are created by the source-load coupling and coupling sections. Furthermore, wideband common-mode (CM) suppression is achieved. The fabricated filter has 3-dB fractional bandwidth ranging from 20.0% to 26.0% centered at 1.71 GHz and wideband suppression (17 dB from 2 to 4.4 GHz) for the differential mode, as well as common-mode suppression better than 20 dB from 0 to 4.5 GHz.
Citation
Ya-Lin Ma, Wenquan Che, Jian-Xin Chen, and Wenjie Feng, "High Selectivity Balanced Bandpass Filter with Tunable Bandwidth Using Stub-Loaded Resonator," Progress In Electromagnetics Research Letters, Vol. 55, 89-95, 2015.
doi:10.2528/PIERL15052804
References

1. Rauscher, C., "Reconfigurable bandpass filter with a three-to-one switchable passband width," IEEE Trans. Microw. Theory Tech., Vol. 51, 573-577, 2003.
doi:10.1109/TMTT.2002.807818

2. Tu, W.-H., "Compact low-loss reconfigurable bandpass filter with switchable bandwidth," IEEE Microw. Wireless Compon. Lett., Vol. 20, 208-210, 2010.
doi:10.1109/LMWC.2010.2042553

3. Miller, A. and J.-S. Hong, "Cascaded coupled line filter with reconfigurable bandwidths using LCP multilayer circuit technology," IEEE Trans. Microw. Theory Tech., Vol. 60, 1577-1586, 2012.
doi:10.1109/TMTT.2012.2189242

4. Lu, X., K. Mouthaan, and T. S. Yeo, "A filter with reconfigurable band edges using dual-behavior resonators," Eur. Microw. Conf., Vol. 44, 1592-1595, 2014.

5. Sanchez-Renedo, M., R. Gomez-Garcia, J. I. Alonso, and C. Briso-Rodriguez, "Tunable combline filter with continuous control of center frequency and bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 53, 191-199, 2005.
doi:10.1109/TMTT.2004.839309

6. Kimura, T., H. Kobayashi, and Y. Kishimoto, "Bandwidth-tunable filter consisting of SAW resonators and BaSrTiO3 varactors directly fabricated on a LiTaO3 wafer," IEEE International Ultrasonics Symposium, 795-798, 2014.

7. Serrano, A. L. C., F. S. Correra, T. P. Vuong, and P. Ferrari, "Synthesis methodology applied to a tunable patch filter with independent frequency and bandwidth control," IEEE Trans. Microw. Theory Tech., Vol. 60, 484-493, 2012.
doi:10.1109/TMTT.2011.2181533

8. Chao, S.-F., W.-C. Lin, and C.-Y. Kuo, "Bandpass filter with tunable bandwidth using triple-mode H-type resonator," International Symposium on Next-Generation Electronics, 1-3, 2014.

9. Huang, X.-G., Q.-Y. Feng, and Q.-Y. Xiang, "Bandpass filter with tunable bandwidth using quadruple-mode stub-loaded resonator," IEEE Microw. Wireless Compon. Lett., Vol. 22, 176-178, 2012.
doi:10.1109/LMWC.2012.2188280

10. Mao, J.-R., W.-W. Choi, K.-W. Tam, W.-Q. Che, and Q. Xue, "Tunable bandpass filter design based on external quality factor tuning and multiple mode resonators for wideband applications," IEEE Trans. Microw. Theory Tech., Vol. 61, 2574-2584, 2013.
doi:10.1109/TMTT.2013.2264684

11. Li, Y. C. and Q. Xue, "Tunable balanced bandpass filter with constant bandwidth and high common-mode suppression," IEEE Trans. Microw. Theory Tech., Vol. 59, 2452-2460, 2011.
doi:10.1109/TMTT.2011.2161325

12. Mao, J.-R., W.-Q. Che, Y.-L. Ma, and J.-X. Chen, "Tunable differential-mode bandpass filters withwide tuning range and high common-mode suppression," IET Microw. Antennas Propag., Vol. 8, 437-444, 2014.
doi:10.1049/iet-map.2012.0203

13. Chun, Y.-H. and J.-S. Hong, "Electronically reconfigurable dual-mode microstrip open-loop resonator filter," IEEE Microw. Wireless Compon. Lett., Vol. 7, 449-451, 2008.
doi:10.1109/LMWC.2008.924922

14. Pozar, D. M., Microwave Engineering, Wiley, 1998.