Vol. 43
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-08-12
Dispersion Analysis of Double-Sided Open Periodic Media Using Inhomogeneous Plane Wave Excitation
By
Progress In Electromagnetics Research M, Vol. 43, 81-90, 2015
Abstract
Double-sided open periodic structures are analyzed using inhomogeneous plane wave scattering. The leaky and surface wave modes of several unit cells of different structures are computed using the poles of generalized reflection and transmission coefficients of inhomogeneous plane waves in the spectral domain. It is shown that the reflection and transmission coefficients of the zeroth order Floquet mode contain the poles of the Green's function of the complex stratified periodic structure. The properties of evanescent mode amplification as well as super resolution near field imaging in a wire medium are addressed. A balanced leaky wave antenna unit cell with double-sided radiation feature is introduced and it is shown that, in contrast to grounded structures, total absorption in lossless non-chiral double-sided open unit cells is not feasible as long as the behavior of the unit cell is well described by its fundamental mode.
Citation
Sakineh Tooni, Larissa Vietzorreck, and Thomas F. Eibert, "Dispersion Analysis of Double-Sided Open Periodic Media Using Inhomogeneous Plane Wave Excitation," Progress In Electromagnetics Research M, Vol. 43, 81-90, 2015.
doi:10.2528/PIERM15052109
References

1. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Vol. 31, John Wiley & Sons, 1994.
doi:10.1109/9780470546307

2. Michalski, K. A. and J. R. Mosig, "Multilayered media Green’s functions in integral equation formulations," IEEE Trans. Antennas Propag., Vol. 45, No. 3, 508-519, 1997.
doi:10.1109/8.558666

3. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159

4. Vande Ginste, D., H. Rogier, and D. De Zutter, "Perfectly matched layer based modelling of layered media: Overview and perspective," URSI International Symposium on Electromagnetic Theory (EMTS), 803-806, 2010.
doi:10.1109/URSI-EMTS.2010.5637224

5. Olyslager, F., "Discretization of continuous spectra based on perfectly matched layers," SIAM Journal on Applied Mathematics, Vol. 64, No. 4, 1408-1433, 2004.
doi:10.1137/S0036139903430197

6. Michalski, J. J. and P. Kowalczyk, "Efficient and systematic solution of real and complex eigenvalue problems employing simplex chain vertices searching procedure," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 2197-2205, 2011.

7. Schulz, N., K. Bierwirth, F. Arndt, and U. Koster, "Finite-difference method without spurious solutions for the hybrid-mode analysis of diffused channel waveguides," IEEE Trans. Antennas Propag., Vol. 38, No. 6, 722-729, 1990.

8. Bozzi, M., S. Germani, L. Minelli, L. Perregrini, and P. de Maagt, "Efficient calculation of the dispersion diagram of planar electromagnetic band-gap structures by the MoM/BI-RME method," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 29-35, 2003.
doi:10.1109/TAP.2004.840522

9. Tooni, S. and T. F. Eibert, "Excitation of complex modes of periodic structures using inhomogeneous plane wave scattering in fast and slow wave regions," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6290-6298, 2014.
doi:10.1109/TAP.2014.2364598

10. Eibert, T. F., Y. Weitsch, H. Chen, and M. E. Gruber, "Solving periodic eigenproblems by solving corresponding excitation problems in the domain of the eigenvalue," Progress In Electromagnetics Research, Vol. 126, 65-84, 2012.
doi:10.2528/PIER12012405

11. Burghignoli, P., G. Lovat, F. Capolino, D. R. Jackson, and D. R. Wilton, "Leaky modes on a grounded wire-medium slab," IEEE/MTT-S International Microwave Symposium, 1663-1666, 2007.

12. Tassin, P., I. Veretennicoff, and G. Van der Sande, "Veselagos lens consisting of left-handed materials with arbitrary index of refraction," Optics Communications, Vol. 264, No. 1, 130-134, 2006.
doi:10.1016/j.optcom.2006.02.013

13. Alu, A. and N. Engheta, "Physical insight into the “growing” evanescent fields of double-negative metamaterial lenses using their circuit equivalence," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 268-272, 2006.
doi:10.1109/TAP.2005.861509

14. Grbic, A. and G. V. Eleftheriades, "Negative refraction, growing evanescent waves, and sub-diffraction imaging in loaded transmission-line metamaterials," IEEE Trans. Antennas Propag., Vol. 51, No. 12, 2297-2305, 2003.

15. Belov, P. A. and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B, Vol. 73, No. 11, 113110-113113, 2006.
doi:10.1103/PhysRevB.73.113110

16. Eibert, T. F., Y. E. Erdemli, and J. L. Volakis, "Hybrid finite element-fast spectral domain multilayer boundary integral modeling of doubly periodic structures," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2517-2520, 2003.
doi:10.1109/TAP.2003.816386

17. Eibert, T. F., J. L. Volakis, D. R. Wilton, and D. R. Jackson, "Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation," IEEE Trans. Antennas Propag., Vol. 47, No. 5, 843-850, 1999.
doi:10.1109/8.774139

18. Eibert, T. F., "A multilevel fast spectral domain algorithm for electromagnetic analysis of infinite periodic arrays with large unit cells," Advances in Radio Science, Vol. 4, No. 4, 111-115, 2006.

19. Hu, B., W. C. Chew, E. Michielssen, and J. Zhao, "Fast inhomogeneous plane wave algorithm for the fast analysis of two-dimensional scattering problems," Radio Science, Vol. 34, No. 4, 759-772, 1999.
doi:10.1029/1999RS900038

20. Craeye, C., N. Ozdemir, E. Martini, and S. Maci, "Complex patterns devoted to physical compression of MoM matrices," 7th European Conference on Antennas and Propagation (EuCAP), 3832-3835, Gothenburg, Sweden, 2013.

21. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Multilayered media Green’s functions in integral equation formulations," Phys. Rev. Lett., Vol. 100, No. 20, 207402-207405, 2008.
doi:10.1103/PhysRevLett.100.207402

22. Dural, G. and M. I. Aksun, "Closed-form Green’s functions for general sources and stratified media," IEEE Trans. Antennas Propag., Vol. 43, No. 7, 1545-1552, 1995.

23. Eibert, T. F. and V. Hansen, "3-D FEM/BEM-hybrid approach based on a general formulation of Huygens’ principle for planar layered media," IEEE Trans. Microw. Theory Techn., Vol. 45, No. 7, 1105-1112, 1997.
doi:10.1109/22.598448

24. Tooni, S., L. Vietzorreck, and T. F. Eibert, "Spectral domain analysis of double sided periodic structures," 9th European Conference on Antenna and Propagation (EuCAP), Lisbon, Portugal, 2015.

25. Tooni, S., L. Vietzorreck, and T. F. Eibert, "Using metamaterial resonators for controlling surface wave modes in an open waveguide," German Microwave Conference (GeMic), Nuremberg, Germany, 2015.

26. Yan, Z., P. A. Belov, and H. Yang, "Amplification of evanescent spatial harmonics and subwavelength imaging inside of a wire medium slab," SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, IMOC, 474-477, 2007.

27. CST "Computer simulation technology: Microwave studio,", http://www.cst.com/.

28. Simovski, C. R., A. J. Viitanen, and S. A. Tretyakov, "Resonator mode in chains of silver spheres and its possible application," Phys. Rev. E, Vol. 72, No. 6, 066606-066615, 2005.
doi:10.1103/PhysRevE.72.066606

29. Bongard, F., J. Perruisseau-Carrier, and J. R. Mosig, "Enhanced periodic structure analysis based on a multiconductor transmission line model and application to metamaterials," IEEE Antennas Propag. Mag., Vol. 57, No. 11, 2715-2726, 2009.