Vol. 54
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-07-06
Equivalent Verification of the Effect of the Ionospheric Faraday Rotation on GEO SAR Imaging by Ferrite
By
Progress In Electromagnetics Research Letters, Vol. 54, 33-38, 2015
Abstract
In Geosynchronous earth orbit synthetic aperture radar (GEO SAR) working system, the radar signal travelling through the atmosphere is sensitive to the ionosphere. One of the effects is the Faraday rotation under geomagnetic field, which is similar to the phenomenon when the signal traveling through a ferrite medium. So based on the theoretical inference, we semi-physically simulate Faraday rotation of the ionosphere with that of the ferrite in the ground, which is one of the experiments of the ground railway prototype testing for GEO SAR system. The measurements of a mountain without ionospheric Faraday rotation and under the equivalent Faraday rotation of ionosphere are given experimentally. Imaging studies show that the influence of the ionosphere Faraday rotation on the distributed targets imaging is not visually obvious. Our work provides experimental basis for the GEO SAR to successfully image on the satellite.
Citation
Wei-Mei Li, Bo Liu, and Hong-Yi Zhao, "Equivalent Verification of the Effect of the Ionospheric Faraday Rotation on GEO SAR Imaging by Ferrite," Progress In Electromagnetics Research Letters, Vol. 54, 33-38, 2015.
doi:10.2528/PIERL15051404
References

1. Tomiyasu, K., "Synthetic aperture radar in geosynchronous orbit," IEEE Antennas and Propagation Symp., Vol. 16, 42-45, University of Maryland, 1978.

2. Tomiyasu, K. and J. Pacelli, "Synthetic aperture radar imaging from an inclined geosynchronous orbit," IEEE Transactions on Geoscience and Remote Sensing, Vol. 21, No. 3, 324-329, 1983.
doi:10.1109/TGRS.1983.350561

3. Liu, Q., W. Hong, W. X. Tan, Y. Lin, Y. Wang, and Y. Wu, "An improved polar format algorithm with performance analysis for geosynchronous circular SAR 2D imaging," Progress In Electromagnetics Research, Vol. 119, 155-170, 2011.
doi:10.2528/PIER11060503

4. Liu, Q., W. Hong, W. X. Tan, and Y. Wu, "Efficient geosynchronous circular SAR raw data simulation of extended 3-D scenes," Progress In Electromagnetics Research, Vol. 127, 335-350, 2012.
doi:10.2528/PIER12030306

5. Zhao, B., X. Qi, H. Song, W. Gao, X. Han, and R. P. Chen, "The accurate fourth-order doppler parameter calculation and analysis for geosynchronous SAR," Progress In Electromagnetics Research, Vol. 140, 91-104, 2013.
doi:10.2528/PIER13031315

6. Zeng, T., W. F. Yang, and Z. G. Ding, D. Liu, T. Long, "A refined two-dimensional nonlinear chirp scaling algorithm for geosynchronous earth orbit SAR," Progress In Electromagnetics Research, Vol. 143, 19-46, 2013.
doi:10.2528/PIER13071206

7. Liu, J., Y. Kuga, A. Ishimaru, et al. "Ionospheric effects on SAR imaging: A numerical study," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 5, 939-947, 2003.
doi:10.1109/TGRS.2003.811813

8. Anthony, F., "Calibration of linearly polarized polarimetric SAR data subject to Faraday rotation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 8, 1617-1624, 2004.
doi:10.1109/TGRS.2004.830161

9. Michael, J. and R. Maurice, "Measurement of ionospheric Faraday rotation in simulated and real space borne SAR data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1512-1523, 2009.
doi:10.1109/TGRS.2008.2004710

10. Yeh, K. C. and C. H. Liu, Theory of Ionospheric Waves, Academic Press, 1972.