Vol. 43
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-07-28
Comprehensive RCS Simulation of Dispersive Media Using SO-FDTD-DPW Method
By
Progress In Electromagnetics Research M, Vol. 43, 19-30, 2015
Abstract
Perfectly Matched Layer (PML) is modeled by Split-Field FDTD (SF-FDTD) in order to simulate Radar Cross Section (RCS) of a plasma slab. PML is used as an absorbing boundary, and discrete plane wave (DPW) is employed to generate plane wave. DPW method has a power isolation of -300 dB between scattered-field and total-field regions. The dispersive media is modelled by shift-operator FDTD. In this article, the SO-FDTD and DPW are combined, and it is proved that this combination shows a good stability. Finally, two different plasma profiles (exponential and polynomial) are used to prove reflection coefficient of a conductive layer can be reduced by choosing true profile of covering layer. By using Near-to-Far-Field Transformation, all fields are transferred to far-field region to calculate RCS.
Citation
Farid Mirhosseini, and Bruce G. Colpitts, "Comprehensive RCS Simulation of Dispersive Media Using SO-FDTD-DPW Method," Progress In Electromagnetics Research M, Vol. 43, 19-30, 2015.
doi:10.2528/PIERM15050603
References

1. Engquist, B. and A.Majda, "Absorbing boundary conditions for the numerical simulation of waves," Mathematics of Computation, Vol. 31, No. 139, 629-651, Jul. 1977.
doi:10.1090/S0025-5718-1977-0436612-4

2. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations," IEEE Transactions on Electromagnetic Compatibility, Vol. 23, No. 4, 377-382, Nov. 1981.

3. Berenger, J. P., "A perfectly matched layer for absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159

4. Berenger, J. P., "Perfectly matched layer for the FDTD solution of wave-structure interaction problems," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 1, 110-117, Jan. 1996.
doi:10.1109/8.477535

5. Berenger, J. P., "Three-dimentinal perfectly matched layer for absorption of electromagnetic waves," Journal of Computational Physics, Vol. 127, 363-379, 1996.
doi:10.1006/jcph.1996.0181

6. Lu, M., M. Lv, A. A. Ergin, B. Shanker, and E. Michielssen, "Multilevel plane wave time domain-based global boundary kernels for two-dimensional finite difference time domain simulations," Radio Science, Vol. 39, No. 4, Aug. 2004.
doi:10.1029/2003RS002928

7. Kivi, J. and M. Okoniewski, "Switched boundary condition (XBC) in FDTD," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 4, 274-276, Apr. 2004.
doi:10.1109/LMWC.2005.845745

8. Sadiku, M. N. O., "Finite difference method," Numerical Techniques in Electromagnetics, 1st Edition, CRC Press, Boca Raton, Florida, 1992.

9. Taflove, A., "Computational Electrodynamics --- The Finite-difference Time-domain Method," Artech House, 2005.

10. Oguz, U. and L. Gurel, "An efficient and accurate technique for the incident-wave excitations in the FDTD method," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 6, 869-882, Jun. 1998.
doi:10.1109/22.681215

11. Guiffaut, C. and K. Mahdjoubi, "A perfect wideband plane wave injector for FDTD method," Proc. IEEE APS. Int. Symp., Vol. 1, 236-239, Salt Lake City, UT, 2000.

12. Moss, C. D., F. L. Teixeira, J. A. Kong, and , "Analysis and compensation of numerical dispersion in the FDTD method for layered, anisotropic media," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1174-1184, Sep. 2002.
doi:10.1109/TAP.2002.802092

13. Schneider, J. B., "Planewaves in FDTD simulations and a nearly perfect total-field/scattered-field boundary," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 12, 3280-3287, Dec. 2004.
doi:10.1109/TAP.2004.836403

14. Tan, T. and M. Potter, "Optimized analytic field propagator (O-AFP) for plane wave injection in FDTD simulations," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 824-831, Mar. 2010.
doi:10.1109/TAP.2009.2039310

15. Tan, T. and M. E. Potter, "1-D multipoint auxiliary source propagator for the total-field/scattered-field FDTD formulation," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 144-148, 2007.

16. Tan, T. and M. Potter, "FDTD discrete planewave (FDTD-DPW) formulation for a perfectly matched source in TFSF simulation," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, 2641-2648, Aug. 2010.
doi:10.1109/TAP.2010.2050446

17. Yang, H. W., R. S. Chen, and Y. Zhang, "SO-FDTD method and its application to the calculation of electromagnetic wave reflection coefficients of plasma," Acta. Phys. Sin., Vol. 55, No. 7, 3465-3469, Jul. 2006.

18. Ge, D. B., Y. L. Wu, and X. Q. Zhu, "Shift operator method applied for dispersive medium in FDTD analysis," J. Radio Sci., Vol. 18, No. 4, 359-362, Aug. 2003.

19. Yang, H. W., "A FDTD analysis on magnetized plasma of Epstein distribution and reflection calculation," Comput. Phys. Commun., Vol. 180, 55-60, 2009.
doi:10.1016/j.cpc.2008.08.007

20. Luebbers, R. J., K. S. Kunz, M. Schneider, and F. Hunsberger, "A finite-difference time-domain near zone to far zone transformation," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 4, 429-433, Apr. 1991.
doi:10.1109/8.81453

21. Balanis, C. A., Advanced Engineering Electromagnetics, 1st Ed., Wiley, 1989.

22. Liu, G. and S. D. Gedney, "Perfectly matched layer media for an unconditionally stable threed-imensional ADI-FDTD method," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 7, 261-263, Jul. 2000.

23. Li, X., A. Taflove, and V. Backman, "Modified FDTD near-to-far-field transformation for improved backscattering calculation of strongly forward-scattering objects," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 35-38, 2005.
doi:10.1109/LAWP.2005.845038

24. Stratton, J. A., Electromagnetic Theory, 1st Ed., McGraw Hill Book Company, 1941.

25. Ruck, G. T., Radar Cross Section Handbook, Plenum Press, 1970.
doi:10.1007/978-1-4899-5324-7