Vol. 42
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-07-14
Computational Fluid Dynamics Thermal Prediction of Fault-Tolerant Permanent-Magnet Motor Using a Simplified Equivalent Model
By
Progress In Electromagnetics Research M, Vol. 42, 199-209, 2015
Abstract
The thermal characteristic of a new out-rotor fault-tolerant permanent-magnet (FTPM) motor is modeled and predicted in this paper. Flow characteristics and thermal characteristics of this FTPM motor are calculated by using computational fluid dynamics method. The key is that an equivalent model is developed to replace the real motor, offering the merits of simplified meshing progress and convenient thermal calculation. Furthermore, the effectiveness of the developed equivalent model has been verified by simulation and experiment. In addition, the temperature distribution of the entire motor is given by using equivalent models. The results can be provided to improve motor thermal performance.
Citation
Wenxiang Zhao, Liyang Chen, Guohai Liu, and Jinghua Ji, "Computational Fluid Dynamics Thermal Prediction of Fault-Tolerant Permanent-Magnet Motor Using a Simplified Equivalent Model," Progress In Electromagnetics Research M, Vol. 42, 199-209, 2015.
doi:10.2528/PIERM15050402
References

1. Matyas, A. R., K. A. Biro, and D. Fodorean, "Multi-phase synchronous motor solution for steering applications," Progress In Electromagnetics Research, Vol. 131, 63-80, 2012.
doi:10.2528/PIER12060507

2. Mahmoudi, A., S. Kahourzade, N. A. Rahim, H. W. Ping, and N. F. Ershad, "Slot-less torus solid-rotor-ringed line-start axial-flux permanent-magnet motor," Progress In Electromagnetics Research, Vol. 131, 331-355, 2012.
doi:10.2528/PIER12070308

3. Zhao, W., M. Cheng, R. Cao, and J. Ji, "Experimental comparison of remedial single-channel operations for redundant flux-switching permanent-magnet motor drive," Progress In Electromagnetics Research, Vol. 123, 189-204, 2012.
doi:10.2528/PIER11110405

4. Mahmoudi, A., N. A. Rahim, and H. W. Ping, "Axial-flux permanent-magnet motor design for electric vehicle direct drive using sizing equation and finite element analysis," Progress In Electromagnetics Research, Vol. 122, 467-496, 2012.
doi:10.2528/PIER11090402

5. Chen, Q., G. Liu, W. Gong, and W. Zhao, "A new fault-tolerant permanent-magnet machine for electric vehicle applications," IEEE Transactions on Magnetics, Vol. 47, No. 10, 4183-4186, 2011.
doi:10.1109/TMAG.2011.2146238

6. Zhao, W., M. Cheng, and K. T. Chau, "Remedial injected-harmonic-current operation of redundant flux-switching permanent-magnet motor drives," IEEE Transactions on Industrial Electronics, Vol. 60, No. 1, 151-159, 2013.
doi:10.1109/TIE.2012.2186107

7. Fornasiero, E., N. Bianchi, and S. Bolognani, "Slot harmonic impact on rotor losses in fractional-slot permanent-magnet machines," IEEE Transactions on Industrial Electronics, Vol. 59, No. 6, 2557-2564, 2012.
doi:10.1109/TIE.2011.2168794

8. Lin, D., P. Zhou, and W. N. Fu, "A dynamic core loss model for soft ferromagnetic and power ferrite materials in transient finite element analysis," IEEE Transactions on Magnetics, Vol. 40, No. 2, 1318-1321, 2004.
doi:10.1109/TMAG.2004.825025

9. Li, G., J. Ojedea, and E. Hoang, "Thermal-electromagnetic analysis for driving cycles of embedded flux-switching permanent-magnet motors," IEEE Transactions on Vehicle Technology, Vol. 61, No. 1, 140-151, 2012.
doi:10.1109/TVT.2011.2177283

10. Jungreuthmayer, C., T. Bauml, O. Winter, M. Ganchev, H. Kapeller, A. Haumer, and C. Kral, "A detailed heat and fluid flow analysis of an internal permanent magnet synchronous machine by means of computational fluid dynamics," IEEE Transactions on Industrial Electronics, Vol. 59, No. 12, 4568-4578, 2012.
doi:10.1109/TIE.2011.2176696

11. Staton, D., A. Boglietti, and A. Cavagnino, "Solving the more difficult aspects of electric motor thermal analysis," IEEE Transactions on Energy Conversion, Vol. 20, No. 3, 620-628, 2005.
doi:10.1109/TEC.2005.847979

12. Valenzuela, M. A. and J. A. Tapia, "Heat transfer and thermal design of finned frames for TEFC variable-speed motors," IEEE Transactions on Industrial Electronics, Vol. 55, No. 10, 3500-3508, 2008.
doi:10.1109/TIE.2008.928150

13. Hettegger, M., B. Streibl, and O. Biro, "Measurements and simulations of the convective heat transfer coefficients on the end windings of an electrical machine," IEEE Transaction on Industrial Electronics, Vol. 59, No. 5, 2299-2308, 2012.
doi:10.1109/TIE.2011.2161656

14. Boglietti, A., A. Cavagnino, and D. Staton, "Determination of critical parameters in electrical machine thermal models," IEEE Transactions on Industry Applications, Vol. 44, No. 4, 1150-1159, 2008.
doi:10.1109/TIA.2008.926233

15. Boglietti, A., A. Cavagnino, D. Staton, M. Shanel, M. Mueller, and C. Mejuto, "Evolution and modern approaches for thermal analysis of electrical machines," IEEE Transactions on Industrial Electronics, Vol. 56, No. 3, 871-882, 2009.
doi:10.1109/TIE.2008.2011622

16. Boglietti, A., A. Cavagnino, M. Lazzari, and M. Pastorelli, "A simplified thermal model for variable-speed self-cooled industrial induction motor," IEEE Transactions on Industrial Applications, Vol. 39, No. 4, 945-952, 2003.
doi:10.1109/TIA.2003.814555

17. Nerg, J., M. Rilla, and J. Pyrhönen, "Thermal analysis of radial-flux electrical machines with a high power density," IEEE Transactions on Industrial Electronics, Vol. 55, No. 10, 3543-3554, 2008.
doi:10.1109/TIE.2008.927403

18. EL-Refaie, A. M., N. C. Harris, T. M. Jahns, and K. M. Rahman, "Thermal analysis of multibarrier interior pm synchronous machine using lumped parameter model," IEEE Transactions on Energy Conversion, Vol. 19, No. 2, 303-309, 2004.
doi:10.1109/TEC.2004.827011

19. Mugglestone, J., S. J. Pickering, and D. Lampard, "Effect of geometric changes on the flow and heat transfer in the end region of a TEFC induction motor," Proc. 9th IEEE Int. Conf. Elect. Mach. Drives, 40-44, Canterbury, U.K., 1999.
doi:10.1049/cp:19990987

20. Marignetti, F. and V. Delli Colli, "Thermal analysis of an axial flux permanent-magnet synchronous machine," IEEE Transactions on Magnetics, Vol. 45, No. 7, 2970-2975, 2009.
doi:10.1109/TMAG.2009.2016415