Vol. 54
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-08-05
Instability of Ion Beam Driven Electrostatic Ion-Cyclotron Waves in Collisional Magnetized Two-Ion Component Plasma
By
Progress In Electromagnetics Research Letters, Vol. 54, 123-128, 2015
Abstract
We have studied the instability of electrostatic ion-cyclotron waves in collisional magnetized two-ion component plasma (light positive K+ ions and heavy positive Cs+ ions). An ion beam propagating through collisional magnetized plasma containing electrons and two positive ion components drives electrostatic ion cyclotron (EIC) waves to instability via Cerenkov interaction. Analytical expressions & numerical calculations have been carried out for the frequency and growth rate of ion cyclotron waves for two EIC wave modes for existing experimental parameters, and it is found that the unstable mode frequency does not depend on electron collision frequency, while the growth rate is increased linearly with the electron collision frequency. Moreover, as the light ion concentration is increased, the frequency of the heavy ion mode moves closer to its gyrofrequency. Similarly, the frequency of the light ion mode approaches the light ion cyclotron frequency as the heavy ion concentration is increased. It is also found that the normalized unstable mode frequencies remains unchanged with electron collision frequencies, while the growth rate is increased linearly with the electron collision frequencies. In addition, the unstable mode frequencies are found to be dependent on the magnetic field strengths.
Citation
Jyotsna Sharma, Suresh C. Sharma, and Daljeet Kaur, "Instability of Ion Beam Driven Electrostatic Ion-Cyclotron Waves in Collisional Magnetized Two-Ion Component Plasma," Progress In Electromagnetics Research Letters, Vol. 54, 123-128, 2015.
doi:10.2528/PIERL15042703
References

1. D’Angelo, N. and R. W. Motley, "Electrostatic oscillations near the ion cyclotron frequency," Phys. Fluids, Vol. 5, 633, 1962.
doi:10.1063/1.1706672

2. Motley, R. W. and N. D’Angelo, "Excitation of electrostatic plasma oscillations near the ioncyclotron frequency," Phys. Fluids, Vol. 6, 296, 1963.
doi:10.1063/1.1706728

3. Chen, F. F., Plasma Physics and Controlled Fusion, Vol. 1, Plasma Physics, Plenum, 1984.
doi:10.1007/978-1-4757-5595-4

4. Benford, G., N. Rynn, J. J. Thomson, and W. S. Williamson, "Turbulent dispersion of ion cyclotron waves: Theory and experiment," Phys. Fluids, Vol. 17, 1001, 1974.
doi:10.1063/1.1694804

5. Correl, D. L., N. Rynn, and H. Bohmer, "Onset, growth, and saturation of the current-driven ion cyclotron instability," Phys. Fluids, Vol. 18, 1800, 1975.
doi:10.1063/1.861061

6. Hendel, H. W. and M. Yamada, "Identification of ion-cyclotron instability with discrete and continuous spectra," Phys. Rev. Lett., Vol. 33, 1076, 1974.
doi:10.1103/PhysRevLett.33.1076

7. Schrittwieser, R., R. Rynn, R. Koslover, and R. Karim, "Electrostatic ion-cyclotron instability driven by a slow electron drift," Plasma Phys. Controlled Fusion, Vol. 26, 1597, 1984.
doi:10.1088/0741-3335/26/12B/014

8. Van Niekerk, E. G., P. H. Krumm, and M. J. Alport, "Electrostatic ion cyclotron waves driven by a radial electric field," Plasma Phys. Controlled Fusion, Vol. 33, 375, 1991.
doi:10.1088/0741-3335/33/4/008

9. Sharma, S. C. and J. Sharma, "Excitation of ion cyclotron waves by a spiraling ion beam in a magnetized dusty plasma cylinder," Phys. Plasmas, Vol. 17, 043704, 2010.
doi:10.1063/1.3381156

10. D’Angelo, N. and R. L. Merlino, "EIC waves in a plasma with negative ions," IEEE Trans. Plasma Sci., Vol. 14, 285, 1986.
doi:10.1109/TPS.1986.4316545

11. Shukla, P. K. and A. A. Mamun, Introduction to Dusty Plasma Physics, IOP, 2002.
doi:10.1887/075030653X

12. Ivanov, A. A. and V. F. Murav’ev, "Excitation of electrostatic ion-cyclotron oscillations by a transverse current," Soy. Phys. --- Doklady, Vol. 16, 971, 1972.

13. Song, B., D. Suszcynsky, N. D’Angelo, and R. L. Merlino, "Electrostatic ion-cyclotron waves in a plasma with negative ions," Phys. Fluids B, Vol. 1, 2316, 1989.
doi:10.1063/1.859049

14. Chow, V. W. and M. Rosenberg, "Electrostatic ion-cyclotron instabilities in negative ion plasmas," Phys. Plasmas, Vol. 3, 1202, 1996.
doi:10.1063/1.871744

15. D’Angelo, N., "Low-frequency electrostatic waves in dusty plasmas," Planet. Space Sci., Vol. 38, 1143, 1990.
doi:10.1016/0032-0633(90)90022-I

16. Suszcynsky, D. M., N. D’Angelo, and R. L. Merlino, "An experimental study of electrostatic ioncyclotron waves in a two-ion component plasma," J. Geophys. Res., Vol. 94, 8966, 1989.
doi:10.1029/JA094iA07p08966

17. Barkan, A., N. D’Angelo, and R. L. Merlino, "Laboratory study of EIC waves in a dusty plasma," Planet. Space Sci., Vol. 43, 905, 1995.
doi:10.1016/0032-0633(94)00226-H

18. Chow, V. W. and M. Rosenberg, "Electrostatic ion-cyclotron instability in dusty plasmas," Planet. Space Sci., Vol. 43, 613, 1995.
doi:10.1016/0032-0633(94)00134-D

19. Sharma, S. C. and M. Sugawa, "The effect of dust charge fluctuations on ion cyclotron wave instability in the presence of an ion beam in a plasma cylinder," Phys. Plasmas, Vol. 6, 444, 1999.
doi:10.1063/1.873210

20. Sharma, J., S. C. Sharma, V. K. Jain, and A. Gahlot, "Excitation of lower hybrid waves by a gyrating ion beam in a negative ion plasma," Phys. Plasmas, Vol. 20, 3, 2013.

21. Sharma, J. and S. C. Sharma, "Excitation of electrostatic ion-cyclotron waves by an ion beam in a two-ion component plasma," Phys. Plasmas, Vol. 17, 123701, 2010.
doi:10.1063/1.3522876

22. Sharma, J., S. C. Sharma, V. K. Jain, and A. Gahlot, "Higher harmonic generation by spiraling ion beam magnetized heavy negative ion plasma," J. Plasma Phys., Vol. 79, 05, 2013.
doi:10.1017/S002237781300007X

23. Sharma, S. C. and V. K. Tripathi, "Excitation of ion-cyclotron waves by a spiralling ion beam in a plasma cylinder," J. Plasma Phys., Vol. 50, 331, 1993.
doi:10.1017/S0022377800027112

24. Chaturvedi, P. K. and P. K. Kaw, "Current driven ion cyclotron waves in collisional plasma," Plasma Phys. Contr. Fusion, Vol. 17, 447, 1975.

25. Milic, B., "Spontaneous excitation of the long-wave ion-cyclotron and ion-acoustic oscillations in fully ionized plasmas," Phys. Fluids, Vol. 15, 1630, 1972.
doi:10.1063/1.1694140

26. Satyanarayana, P., P. K. Chaturvedi, M. J. Keskinen, J. D. Huba, and S. L. Ossakow, "Theory of the current-driven ion cyclotron instability in the bottomside ionosphere," J. Geophys. Res., Vol. 90, 12209, 1985.
doi:10.1029/JA090iA12p12209

27. Ostrikov, K. and S. Xu, Plasma Aided Nanofabrication from Plasma Sources to Nanoassembly, Wiley, 2007.
doi:10.1002/9783527611553