Vol. 53
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-05-15
A Dual-Band Bandpass Filter for 2.4 GHz Bluetooth and 5.2 GHz WLAN Applications
By
Progress In Electromagnetics Research Letters, Vol. 53, 65-70, 2015
Abstract
In this paper a dual-band bandpass filter using loaded stub in the ring resonator and etched nested C-shape defected ground structure (DGS) on ground plane is reported. The operating frequencies of the bandpass filter are selected for applications in Bluetooth (2.4 GHz-2.484 GHz) and WLAN (5.15 GHz-5.35 GHz) systems. Due to its applications in WLAN and Bluetooth system the filter will be subjected to high EM radiation from the antenna and nearby sources. Therefore, susceptibility study of such filter is very important. The susceptibility study of the filter has been carried out by subjecting the structure to an interference source. Experimental results are presented and analyzed.
Citation
Lakhindar Murmu, and Sushrut Das, "A Dual-Band Bandpass Filter for 2.4 GHz Bluetooth and 5.2 GHz WLAN Applications," Progress In Electromagnetics Research Letters, Vol. 53, 65-70, 2015.
doi:10.2528/PIERL15041601
References

1. Wolff, I. and N. Knoppik, "Microstrip ring resonator and dispersion measurements on microstrip lines," Electron. Lett., Vol. 7, 779-781, 1971.
doi:10.1049/el:19710532

2. Mondal, P. and M. K. Mandal, "Design of dual-band bandpass filters using stub-loaded open-loop resonators," IEEE Trans. on Microw. Theory and Tech., Vol. 56, No. 1, 150-155, 2008.
doi:10.1109/TMTT.2007.912204

3. Chen, F. C., Z. H. Chu, and Q. X. Tu, "Design of compact dual-band bandpass filter using short stub loaded resonator," Microwave Opt. Technol. Lett., Vol. 51, No. 4, 959-963, 2009.
doi:10.1002/mop.24209

4. Wu, X.-H., Q.-X. Chu, and X.-K. Tian, "Dual-band bandpass filter using novel side-stub-loaded resonator," Microwave Opt. Technol. Lett., Vol. 54, No. 2, 362-364, 2012.
doi:10.1002/mop.26537

5. Chin, K.-S. and C.-K. Lung, "Miniaturized microstrip dual-band bandstop filters using tri-section stepped-impedance resonators," Progress In Electromagnetics Research C, Vol. 10, 37-48, 2009.
doi:10.2528/PIERC09080306

6. Chiou, Y.-C., "Transmission zero design graph for dual-mode dual-band filter with periodic stepped-impedance ring resonator," Progress In Electromagnetics Research, Vol. 108, 23-36, 2010.
doi:10.2528/PIER10071608

7. You, B., L. Chen, Y. Liang, et al. "A high-selectivity tunable dual-band bandpass filter using stub-loaded stepped-impedance resonators," IEEE Microw. Wirel. Compon. Lett., Vol. 24, No. 11, 736-738, 2014.
doi:10.1109/LMWC.2014.2348322

8. Chen, C.-F., S.-F. Chang, B.-H. Tseng, and J.-H. Weng, "Compact dual-band stepped-impedance resonator filter with separate coupling paths," Electronics Letters, Vol. 50, No. 21, 1551-1552, 2014.
doi:10.1049/el.2014.2982

9. Zhang, R. and L. Zhu, "Design of a compact dual-band bandpass filter using coupled stepped-impedance resonators," IEEE Microw. Wirel. Compon. Lett., Vol. 24, No. 3, 155-157, 2014.
doi:10.1109/LMWC.2013.2293670

10. Miyake, H., S. Kitazawa, and T. Ishizaki, "A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 2, 789-792, 1997.

11. Watanbe, T., K. Furutani, and N. Nakajima, "Antenna switch duplexer for dual-band phone (GSM/DCS) using LTCC multilayer technology," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 1, 215-218, 1999.

12. Wang, K., L. Zhu, S.-W. Wong, et al. "Balanced dual-band BPF with intrinsic common-mode suppression on double-layer substrate," Electron. Lett., Vol. 51, No. 9, 705-707, 2015.
doi:10.1049/el.2015.0327

13. Garcia-Garcia, J., J. Bonache, and F. Martin, "Application of electromagnetic bandgap to the design of ultra-wide bandpass filters with good out-of-band performance," IEEE Trans. on Microw. Theory and Tech., Vol. 54, 4136-4140, 2006.
doi:10.1109/TMTT.2006.886155

14. Yang, F., K. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit," IEEE Trans. on Microw. Theory and Tech., Vol. 47, No. 8, 1509-1514, 1999.
doi:10.1109/22.780402

15. Radonic, V. and V. C. Bengin, "Control of inter-resonator coupling using defected ground structure lattice," Electron. Lett., Vol. 51, No. 5, 399-401, 2015.
doi:10.1049/el.2014.4177

16. Ahn, D., J. Park, C. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using a novel microstrip defected ground structure," IEEE Trans. on Microw. Theory and Tech., Vol. 49, No. 1, 86-93, 2001.
doi:10.1109/22.899965

17. Chaudhary, G., H. Choi, Y. Jeong, et al. "Design of dual-band bandpass filter using DGS with controllable second passband," IEEE Microw. Wirel. Compon. Lett., Vol. 21, No. 11, 589-591, 2011.
doi:10.1109/LMWC.2011.2167140

18. Song, K., F. Zhang, and Y. Fan, "Miniaturized dual-band bandpass filter with good frequency selectivity using SIR and DGS," AEU — International Journal of Electronics and Communications, Vol. 68, No. 5, 384-387, 2014.
doi:10.1016/j.aeue.2013.10.005

19. Jin, X., Z.-H. Zhang, L. Wang, and B.-R. Guan, "Compact dual-band bandpass filter using single meander multimode DGS resonator," Electron. Lett., Vol. 49, No. 17, 1083-1084, 2013.
doi:10.1049/el.2013.0977

20. Su, T., L.-J. Zhang, S.-J. Wang, Z.-P. Li, and Y.-L. Zhang, "Design of dual-band bandpass filter with constant absolute bandwidth," Microwave Opt. Technol. Lett., Vol. 56, No. 3, 715-718, 2014.
doi:10.1002/mop.28144

21. Huang, S. Y. and Y. H. Lee, "Susceptibility of an electromagnetic bandgap filter," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 3, 599-603, 2010.
doi:10.1109/TEMC.2009.2032170

22. Du, Z., K. Gong, J. S. Fu, B. Gao, and Z. Feng, "Influence of a metallic enclosure on the S-parameters of microstrip photonic bandgap structures," IEEE Transactions on Electromagnetic Compatibility, Vol. 44, No. 2, 324-328, 2002.
doi:10.1109/TEMC.2002.1003397

23. Chang, K. and L. H. Hsieh, Microwave Ring Circuits and Related Structures, 2nd edition, Wiley-Interscience, Hoboken, NJ, 2004.
doi:10.1002/0471721298