Vol. 43
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-08-19
Light Scattering from Two-Dimensional Periodic Arrays of Noble-Metal Disks and Complementary Circular Apertures
By
Progress In Electromagnetics Research M, Vol. 43, 119-133, 2015
Abstract
Numerical solution is presented for light scattering from two kinds of free-standing periodic arrays, that is, disks made of noble-metal and circular apertures perforated in a thin noble-metal sheet. The shapes of them are complementary to each other, and the circular areas are allocated along two orthogonal coordinates with the same periodicity. Using the generalized boundary conditions of the surface impedance type, we formulate the boundary value problem into a set of integral equations for unknown electric and magnetic current densities defined over the circular area. Employment of the method of moments allows us to solve the integral equations and give the expansion coefficients of the current densities, from which we can find reflected, transmitted, and absorbed powers. Dependence of the powers on the array parameters and wavelength is discussed in detail from the viewpoint of grating resonance. Special attention is paid to the extraordinary transmission which occurs in the arrays of apertures of sub-wavelength size by analytical derivation of the quasi-static solutions.
Citation
Xiaowei Ji, Daiki Sakomura, Akira Matsushima, and Taikei Suyama, "Light Scattering from Two-Dimensional Periodic Arrays of Noble-Metal Disks and Complementary Circular Apertures," Progress In Electromagnetics Research M, Vol. 43, 119-133, 2015.
doi:10.2528/PIERM15040201
References

1. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, 2007.

2. Kim, K. Y., Plasmonics: Principles and Applications, InTech, 2012.
doi:10.5772/2633

3. Natarov, D. M., V. O. Byelobrov, R. Sauleau, T. M. Benson, and A. I. Nosich, "Periodicity-induced effects in the scattering and absorption of light by infinite and finite gratings of circular silver nanowires," Optics Express, Vol. 19, No. 22, 22176-22190, 2011.
doi:10.1364/OE.19.022176

4. Shapoval, O. V., R. Sauleau, and A. I. Nosich, "Modeling of plasmon resonances of multiple flat noble-metal nanostrips with a median-line integral equation technique," IEEE Trans. Nanotechnology, Vol. 12, No. 3, 442-449, 2013.
doi:10.1109/TNANO.2013.2256365

5. Shapoval, O. V., A. I. Nosich, and J. Ctyroky, "Resonance effects in the optical antennas shaped as finite comb-like gratings of noble-metal nanostrips," SPIE Proc. 8781 (Integrated Optics: Physics and Simulations), No. 87810U, 1-8, 2013.

6. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, 667-669, 1998.
doi:10.1038/35570

7. Glushko, O., R. Brunner, R. Meisels, S. Kalchmair, and G. Strasser, "Extraordinary transmission in metal hole array-photonic crystal hybrid structures," Optics Express, Vol. 20, No. 15, 17174-17182, 2012.
doi:10.1364/OE.20.017174

8. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "Surface-integral equations for electromagnetic scattering from impenetrable and penetrable sheets," IEEE Antennas Propag. Mag., Vol. 35, No. 6, 14-25, 1993.
doi:10.1109/74.248480

9. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, IEE, 1995.
doi:10.1049/PBEW041E

10. Shapoval, O. V., R. Sauleau, and A. I. Nosich, "Scattering and absorption of waves by flat material strips analyzed using generalized boundary conditions and Nystrom-type algorithm," IEEE Trans. Antennas Propagat., Vol. 59, No. 9, 3339-3346, 2011.
doi:10.1109/TAP.2011.2161547

11. Munk, B. A., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, 2000.
doi:10.1002/0471723770

12. Amitay, N. and V. Galindo, "The analysis of circular waveguide phased arrays," Bell Syst. Tech. J., Vol. 47, No. 9, 1903-1932, 1968.
doi:10.1002/j.1538-7305.1968.tb01096.x

13. Chen, C. C., "Diffraction of electromagnetic waves by a conducting screen perforated periodically with circular holes," IEEE Trans. Microwave Theory Tech., Vol. 19, No. 5, 475-481, 1971.
doi:10.1109/TMTT.1971.1127548

14. Chen, C. C., "Transmission of microwave through perforated flat plates of finite thickness," IEEE Trans. Microwave Theory Tech., Vol. 21, No. 1, 1-6, 1973.
doi:10.1109/TMTT.1973.1127906

15. Koledintseva, M. Y., J. Huang, J. L. Drewniak, R. E. DuBroff, and B. Archambeault, "Modeling of metasheets embedded in dielectric layers," Progress In Electromagnetics Research B, Vol. 44, 89-116, 2012.
doi:10.2528/PIERB12070910

16. Hamdi, B., T. Aguili, and H. Baudrand, "Floquet modal analysis to modelize and study 2-D planar almost periodic structures in finite and infinite extent with coupled motifs," Progress In Electromagnetics Research B, Vol. 62, 63-86, 2015.
doi:10.2528/PIERB14111602

17. Matsushima, A., T. L. Zinenko, H. Nishimori, and Y. Okuno, "Plane wave scattering from perpendicularly crossed multilayered strip gratings," Progress In Electromagnetics Research, Vol. 28, 185-203, 2000.
doi:10.2528/PIER99102801

18. Matsushima, A., Y. Momoka, M. Ohtsu, and Y. Okuno, "Efficient numerical approach to electromagnetic scattering from three-dimensional periodic array of dielectric spheres using sequential accumulation," Progress In Electromagnetics Research, Vol. 69, 305-322, 2007.
doi:10.2528/PIER06123002

19. Harrington, R. F., Field Computation by Moment Methods, Macmillan, 1968.

20. Braver, I. M., P. Sh. Fridberg, K. L. Garb, and I. M. Yakover, "The behavior of the electromagnetic field near the edge of a resistive half-plane," IEEE Trans. Antennas Propagat., Vol. 36, No. 12, 1760-1768, 1988.
doi:10.1109/8.14398

21. Mittra, R., T. Itoh, and T. S. Li, "Analytical and numerical studies of the relative convergence phenomenon arising in the solution of an integral equation by the moment method," IEEE Trans. Microwave Theory Tech., Vol. 20, No. 2, 96-104, 1972.
doi:10.1109/TMTT.1972.1127691

22. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev., Vol. 6, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370

23. Amitay, N. and V. Galindo, "On energy conservation and the method of moments in scattering problems," IEEE Trans. Antennas Propagat., Vol. 17, No. 7, 747-751, 1969.
doi:10.1109/TAP.1969.1139549

24. Lee, S. W., G. Zarrillo, and C. L. Law, "Simple formulas for transmission through periodic metal grids or plates," IEEE Trans. Antennas Propagat., Vol. 30, No. 5, 904-909, 1982.
doi:10.1109/TAP.1982.1142923

25. Widenberg, B., S. Poulsen, and A. Karlsson, "Scattering from thick frequency selective screens," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 9, 1303-1328, 2000.
doi:10.1163/156939300X01265