Vol. 53
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-05-19
Electromagnetically-Coupled Millimeter-Wave Antenna Array with Non-Uniform Distribution for 60 GHz ISM Applications
By
Progress In Electromagnetics Research Letters, Vol. 53, 71-76, 2015
Abstract
In this article, the design of an electromagnetically-coupled millimeter-wave elliptical patch array antenna prepared to work in the 56-65 GHz (14.8%) frequency band is presented. The introduced antenna array is designed for low-loss, high-gain and low cross-polarization levels. The proposed antenna exhibits a measured gain of 8 dBi and good linear polarization across the desired frequency range. It has a good side lobe suppression better than 17 dB in both E- and H-planes. Measured and simulated results confirm that this antenna is a good candidate for short-range wireless communication applications at millimeter-wave frequencies.
Citation
Osama Mohamed Haraz Ahmed, "Electromagnetically-Coupled Millimeter-Wave Antenna Array with Non-Uniform Distribution for 60 GHz ISM Applications," Progress In Electromagnetics Research Letters, Vol. 53, 71-76, 2015.
doi:10.2528/PIERL15031703
References

1. Fisher, R., "60 GHz WPAN standardization within IEEE 802.15.3c," Proc. Int. Symp. on Signals, Systems and Electronics, 103-105, 2007.

2. Br’egains, J. C., L. Castedo, and F. Ares, "A WiMAX conformal broad-beam antenna," IEEE Antennas and Propagation Magazine, Vol. 52, 106-109, 2011.
doi:10.1109/MAP.2010.5723233

3. Haraz, O., S. Almorqi, A.-R. Sebak, and S. A. Alshebeili, "High-gain broadband antennas for 60-GHz short-range wireless communications," Wideband, Multiband, and Smart Reconfigurable Antennas for Modern Wireless Communications, M. A. Matin (ed.), in Press.

4. Nakano, S. H., Y. Hirachi, J. Hirokawa, and M. Ando, "Cost-effective 60-GHz antenna-package with end-fire radiation from open-ended post-wall waveguide for wireless file-transfer system," Proc. IEEE MTT-S Int. Microwave Symp. Digest (MTT), 449-452, May 23–28, 2010.

5. Sun, M., X. Qing, and Z. N. Chen, "60-GHz antipodal Fermi antennas on PCB," Proc. Eur. Conf. on Antennas and Propagation, 11-15, Rome, Italy, Apr. 2011.

6. Elboushi, A. M., O. Ahmed, A. Sebak, and T. Denidni, "A new circularly polarized high gain DRA millimeter-wave antenna," IEEE International Symposium on Antennas and Propagation and CNC/USNC/URSI Radio Science Meeting (AP-S/URSI), 1-4, Toronto, Canada, Jul. 11–17, 2010.

7. Haraz, O. M., A.-R. Sebak, and S. A. Alshebeili, "Study the effect of using low-cost dielectric lenses with printed log-periodic dipole antennas for millimeter-wave applications," International Journal of Antennas and Propagation,, Vol. 2015, Article ID 209430, 7 Pages, 2015, Doi: 10.1155/2015/209430.
doi:10.1155/2015/209430

8. Haraz, O. M., A.-R. Sebak, and S. A. Alshebeili, "Performance investigation of V-band PLPDA antenna loaded with a hemispherical dielectric lens for millimeter-wave applications," Microwave and Optical Technology Letters, Vol. 57, No. 3, 630-634, Mar. 2015.
doi:10.1002/mop.28915

9. Haraz, O. M., A.-R. Sebak, and S. A. Alshebeili, "Low-cost high gain printed log-periodic dipole array antenna with dielectric lenses for V-band applications," IET Microwaves, Antennas and Propagation, Vol. 9, No. 6, 541-552, Nov. 24, 2014, Doi: 10.1049/iet-map.2014.0319.
doi:10.1049/iet-map.2014.0319

10. Haraz, O. M., A.-R. Sebak, and S. A. Alshebeili, "Design of a printed log-periodic dipole array antenna with high gain for millimeter-wave applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 25, No. 3, 185-193, 2015, Doi: 10.1002/mmce.20848.
doi:10.1002/mmce.20848