Vol. 53
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-04-24
Miniaturized Microstrip Patch Antenna with Spiral Defected Microstrip Structure
By
Progress In Electromagnetics Research Letters, Vol. 53, 37-44, 2015
Abstract
Use of discontinuities in microstrip lines is currently employed to improve the performance of different passive circuits, including reduction of amplifiers, enhancement of filter characteristics and applications to suppress harmonics in patch antennas. This paper presents an improved method of size reduction of a microstrip antenna using Defected Microstrip Structure (DMS) that it is used to perform serious LC resonance property in certain frequency. The DMS is integrated in antenna structure, and therefore this method keeps the antenna size unchanged and makes a resonance frequency. This resonance is due to the abrupt change of current path of antenna that resonates at 5.8 GHz which is shifted to 2.69 GHz thanks to spiral DMS. A prototype of the antenna was fabricated with an FR4 substrate and tested.
Citation
Hanae Elftouh, Naima Amar Touhami, and Mohamed Aghoutane, "Miniaturized Microstrip Patch Antenna with Spiral Defected Microstrip Structure," Progress In Electromagnetics Research Letters, Vol. 53, 37-44, 2015.
doi:10.2528/PIERL15031003
References

1. Sai Sandeep, B. and S. Sreenath Kashyap, "Design and simulation of microstrip patch array antenna for wireless communications at 2.4 GHz," International Journal of Scientific & Engineering Research, Vol. 3, No. 11, Nov. 2012.

2. Garg, B., R. Tiwari, A. Kumar, and S. K. Thakur, "Design of broadband rectangular microstrip patch antenna inset ‘L’ shaped feed with rectangular ‘L’ slots in ground plane," International Journal of Computer Applications, Vol. 29, No. 1.

3. Nashaat, D., H. A. Elsade, E. Abdallah, H. Elhenawy, and M. F. Iskandar, "Multiband and miniaturized inset feed microstrip patch antenna using multiple spiral-shaped defect ground structure (DGS)," IEEE Antennas and Propagation Society International Symposium, APSURSI’ 09, 1-4, Jun. 1–5, 2009.

4. Lo, T. K. and Y. Hwang, "Microstrip antennas of very high permittivity for personal communications," 1997 Asia Pacific Microwave Conference, 253-256, 1997.

5. Tirado-Mendez, J. A., M. A. Peyrot-Solis, H. Jardon Aguilar, E. A. Andrade-Gonzalez, and M. Reyes-Ayala, "Applications of novel defected microstrip structure (DMS) in planar passive circuits," Proceedings of the 10th WSEAS International Conference on CIRCUITS, 336-369, Vouliagmeni, Athens, Greece, Jul. 10–12, 2006.

6. Chakraborty, M., B. Rana, P. Sarkar, and A. Das, "Size reduction of microstrip antenna with slots and defected ground structure," International Journal of Electronics Engineering, Vol. 4, No. 1, 61-64, 2012.

7. Xiao, J.-K. and W.-J. Zhu, "New bandstop filter using simple defected microstrip structure," Microwave Journal, Sep. 11, 2011.

8. Elftouh, H., N. A. Touhami, M. Aghoutane, S. El Amrani, A. Tazon, and M. Boussouis, "Miniaturized microstrip patch antenna with defected ground structure," Progress In Electromagnetics Research C, Vol. 55, 25-33, 2014.
doi:10.2528/PIERC14092302

9. Fan, M., R. Hu, Z. H. Feng, X. X. Zhang, and Q. Hao, "Advance in 2D-EBG structures’ research," J. of Infrared Millimeter Waves, Vol. 22, No. 2, 2003.

10. Arya, A. K., A. Patnaik, and M. V. Kartikeyan, "Microstrip patch antenna with skew-F shaped DGS for dual band operation," Progress In Electromagnetics Research M, Vol. 19, 147-160, 2011.
doi:10.2528/PIERM11052305

11. Kapoor, S. and D. Parkash, "Miniaturized triple band microstrip patch antenna with defected ground structure for wireless communication applications," International Journal of Computer Applications, Vol. 57, No. 7, Nov. 2012, ISSN: 0975-8887.

12. Lo, T. K. and Y. Hwang, "Microstrip antennas of very high permittivity for personal communications," 1997 Asia Pacific Microwave Conference, 253-256, 1997.

13. Sinati, R. A., CAD of Microstrip Antennas for Wireless Applications, Artech House, Norwood, MA, 1996.

14. Waterhouse, R., Printed Antennas for Wireless Communications, John Wiley & Sons Inc., 2007.
doi:10.1002/9780470512241

15. Wang, H. Y. and M. J. Lancaster, "Aperture-coupled thin-film superconducting meander antennas," IEEE Transactions on Antennas and Propagation, Vol. 47, 829-836, 1999.
doi:10.1109/8.774137

16. Yang, F., K. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic bandgap (DC-PBG) structure and its applications for microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 8, 1509-1514, Aug. 1999.
doi:10.1109/22.780402

17. Mao, S.-G. and Y. Zhi, "Coplanar waveguide BPF with compact size and wide spurious free stopband using electromagnetic bandgap resonators," IEEE Microwave and Wireless Components Letters, Vol. 7, No. 3, 181-183, Mar. 2007.
doi:10.1109/LMWC.2006.890461

18. Lim, J., C. Kim, D. Ahn, Y. Jeong, and S. Nam, "Design of lowpass filters using defected ground structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 8, 2539-2545, Jan. 2005.
doi:10.1109/TMTT.2005.852765

19. EI-Shaarawy, H. B., F. Coccetti, R. Plana, M. EI-Said, and E. A. Hashish, "A novel reconfigurable DGS cell for multistopband filter on CPW technology," 2008 Asia Pacific Microwave Conference, 1-4, 2008.
doi:10.1109/APMC.2008.4958689

20. Ahn, D., J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, 86-93, Jan. 2001.
doi:10.1109/22.899965

21. Sung, Y. J., C. S. Ahn, and Y.-S. Kim, "Size reduction and harmonic suppression of rat-race hybrid coupler using defected ground structure," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 1, 7-9, Jan. 2004.
doi:10.1109/LMWC.2003.821499

22. El-Shaarawy, H. B., F. Coccetti, R. Plana, M. El Said, and E. A. Hashish, "Compact bandpass ring resonator filter with enhanced wide-band rejection characteristics using defected ground structures," IEEE Microwave and Wireless Components Letters, Vol. 18, 500-502, 2008.
doi:10.1109/LMWC.2008.2000998

23. Parui, S. K., S. R. Choudhury, A. Roy, L. Murmu, and S. Das, "Bandstop filtering characteristics of a new spiral defected microstrip structure (DMS)," International Symposium on Devices MEMS, Intelligent Systems & Communication (ISDMISC), 2011.

24. Kazerooni, M., A. Cheldavi, and M. Kamarei, "Comparing the performance of defected microstrip structure (DMS) and defected ground structure (DGS) in microstrip miniature circuits," Iranian Conference on Electrical Engineering, 2009.

25. Hosseini, S. R., R. Sarraf Shirazi, and G. Moradi, "A novel defect microstrip structure (DMS) coupled line bandpass filter in C band," PIERS Proceedings, 845-848, Moscow, Russia, Aug. 19–23, 2012.