Vol. 42
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-04-21
Graphene Assisted Radiation Adjustable OAM Generator
By
Progress In Electromagnetics Research M, Vol. 42, 31-38, 2015
Abstract
Graphene is increasingly being used in the design of electromagnetic devices. The resistivity of graphene can be adjusted via chemical potential tuning, which truly benefits the implementation of tunable and reconfigurable devices. This paper investigates the switch-like attribute of parasitic graphene surface used in a dipole operating at 0.39 THz. Further, a novel orbital angular moment (OAM) generator with radiation reconfiguration is proposed. Spiral beams carrying variety of OAM modes can be produced easily using the generator.
Citation
Fuchun Mao, Ming Huang, Jialin Zhang, Jingjing Yang, and Tinghua Li, "Graphene Assisted Radiation Adjustable OAM Generator," Progress In Electromagnetics Research M, Vol. 42, 31-38, 2015.
doi:10.2528/PIERM15030505
References

1. Geim, A. K., "Graphene: Status and prospects," Science, Vol. 324, No. 5934, 1530-1534, 2009.
doi:10.1126/science.1158877

2. Allen, M. J., V. C. Tung, and R. B. Kaner, "Honeycomb carbon: A review of graphene," Chemical Reviews, Vol. 110, No. 1, 132-145, 2009.
doi:10.1021/cr900070d

3. Cooper, D. R., B. D’. Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, and V. Yu, "Experimental review of graphene," International Scholarly Research Notices, Vol. 2012, 2012.

4. Lin, Y.-M., C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and Ph. Avouris, "100-GHz transistors from wafer-scale epitaxial graphene," Science, Vol. 327, No. 5966, 662-662, 2010.
doi:10.1126/science.1184289

5. Wu, Y., Y. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, "High-frequency, scaled graphene transistors on diamond-like carbon," Nature, Vol. 472, No. 7341, 74-78, 2011.
doi:10.1038/nature09979

6. Ming, L., X. B. Yin, and X. Zhang, "Double-layer graphene optical modulator," Nano Letters, Vol. 12, No. 3, 1482-1485, 2012.
doi:10.1021/nl204202k

7. Francescato, Y., V. Giannini, J. J. Yang, M. Huang, and S. A. Maier, "Graphene sandwiches as a platform for broadband molecular spectroscopy," ACS Photonics, Vol. 1, No. 5, 437-443, 2014.
doi:10.1021/ph5000117

8. Liu, H. T., Y. Q. Liu, and D. B. Zhu, "Chemical doping of graphene," Journal of Materials Chemistry, Vol. 21, No. 10, 3335-3345, 2011.
doi:10.1039/C0JM02922J

9. Fang, Z. Y., Y. M. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. L. Koppens, P. Nordlander, and N. J. Halas, "Plasmon-induced doping of graphene," Acs Nano, Vol. 6, No. 11, 10222-10228, 2012.
doi:10.1021/nn304028b

10. Ashkan, V. and N. Engheta, "Transformation optics using graphene," Science, Vol. 332, No. 6035, 1291-1294, 2011.
doi:10.1126/science.1202691

11. Perruisseau-Carrier, J., "Graphene for antenna applications: Opportunities and challenges from microwaves to THz," IEEE Antennas and Propagation Conference (LAPC), 2012, 1-4, Loughborough, 2012.

12. Dragoman, M., A. A. Muller, D. Dragoman, F. Coccetti, and R. Plana, "Terahertz antenna based on graphene," Journal of Applied Physics, Vol. 107, No. 10, 104313, 2010.
doi:10.1063/1.3427536

13. Llatser, I., C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, "Graphene-based nano-patch antenna for terahertz radiation," Photonics and Nanostructures-Fundamentals and Applications, Vol. 10, No. 4, 353-358, 2012.
doi:10.1016/j.photonics.2012.05.011

14. Tamagnone, M., J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, "Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets," Journal of Applied Physics, Vol. 112, No. 11, 114915, 2012.
doi:10.1063/1.4768840

15. Tamagnone, M., J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, "Reconfigurable terahertz plasmonic antenna concept using a graphene stack," Applied Physics Letters, Vol. 101, No. 21, 214102, 2012.
doi:10.1063/1.4767338

16. Zhou, T., Z. Cheng, H. Zhang, M. Berre, L. Militaru, and F. Calmon, "Miniaturized tunable terahertz antenna based on graphene," Microwave and Optical Technology Letters, Vol. 56, No. 8, 1792-1794, 2014.
doi:10.1002/mop.28450

17. Dragoman, M., M. Aldrigo, A. Dinescu, D. Dragoman, and A. Costanzo, "Towards a terahertz direct receiver based on graphene up to 10 THz," Journal of Applied Physics, Vol. 115, No. 4, 044307, 2014.
doi:10.1063/1.4863305

18. Jornet, J. M. and I. F. Akyildiz, "Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band," 2010 Proceedings of the Fourth European Conference on IEEE Antennas and Propagation (EuCAP), 1-5, 2010.

19. Jornet, J. M. and I. F. Akyildiz, "Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks," IEEE Journal on Selected Areas in Communications, Vol. 31, No. 12, 685-694, 2013.
doi:10.1109/JSAC.2013.SUP2.1213001

20. Tamagnone, M. and J. Perruisseau-Carrier, "Predicting input impedance and efficiency of graphene reconfigurable dipoles using a simple circuit model,", arXiv preprint arXiv:1402.1527, 2014.

21. Liu, P., W. Cai, L. Wang, X. Zhang, and J. Xu, "Tunable terahertz optical antennas based on graphene ring structures," Applied Physics Letters, Vol. 100, No. 15, 153111, 2012.
doi:10.1063/1.3702819

22. Filter, R., M. Farhat, M. Steglich, R. Alaee, C. Rockstuhl, and F. Lederer, "Tunable graphene antennas for selective enhancement of THz-emission," Optics Express, Vol. 21, No. 3, 3737-3745, 2013.
doi:10.1364/OE.21.003737

23. Hanson, G. W., "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," Journal of Applied Physics, Vol. 103, No. 6, 064302, 2008.
doi:10.1063/1.2891452

24. Wang, J., J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, and A. E. Willner, "Terabit free-space data transmission employing orbital angular momentum multiplexing," Nature Photonics, Vol. 6, No. 7, 488-496, 2012.
doi:10.1038/nphoton.2012.138

25. Bozinovic, N., Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, and S. Ramachandran, "Terabit-scale orbital angular momentum mode division multiplexing in fibers," Science, Vol. 340, No. 6140, 1545-1548, 2013.
doi:10.1126/science.1237861

26. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "Circular polarized patch antenna generating orbital angular momentum," Progress In Electromagnetics Research, Vol. 148, 23-30, 2014.
doi:10.2528/PIER14050204

27. Mohammadi, S. M., L. K. Daldorff, J. E. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, and B. Isham, "Orbital angular momentum in radio --- A system study," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 565-572, 2010.
doi:10.1109/TAP.2009.2037701

28. Thidé, B., H. Then, J. Sj¨oholm, K. Palmer, J. Bergman, T. D. Carozzi, and R. Khamitova, "Utilization of photon orbital angular momentum in the low-frequency radio domain," Physical Review Letters, Vol. 99, No. 8, 087701, 2007.
doi:10.1103/PhysRevLett.99.087701

29. Tamburini, F., E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, "Encoding many channels on the same frequency through radio vorticity: First experimental test," New Journal of Physics, Vol. 14, No. 3, 033001, 2012.
doi:10.1088/1367-2630/14/3/033001

30. Rui, G., R. L. Nelson, and Q. Zhan, "Beaming photons with spin and orbital angular momentum via a dipole-coupled plasmonic spiral antenna," Optics Express, Vol. 20, No. 17, 18819-18826, 2012.
doi:10.1364/OE.20.018819

31. Zhu, J., X. Cai, Y. Chen, and S. Yu, "Theoretical model for angular grating-based integrated optical vortex beam emitters," Optics Letters, Vol. 38, No. 8, 1343-1345, 2013.
doi:10.1364/OL.38.001343

32. Bouchard, F., H. Mand, M. Mirhosseini, E. Karimi, and R. W. Boyd, "Achromatic orbital angular momentum generator," New Journal of Physics, Vol. 16, No. 12, 123006, 2014.
doi:10.1088/1367-2630/16/12/123006

33. Marrucci, L., C. Manzo, and D. Paparo, "Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media," Physical Review Letters, Vol. 96, No. 16, 163905, 2006.
doi:10.1103/PhysRevLett.96.163905

34. Gómez-Díaz, J. S. and J. Perruisseau-Carrier, "Graphene-based plasmonic switches at near infrared frequencies," Optics Express, Vol. 21, No. 13, 15490-15504, 2013.
doi:10.1364/OE.21.015490