Vol. 53
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-06-19
Compact Differential Bandpass Filters Based on Coupled-Line Resonators with Improved Performance and Miniaturized Size
By
Progress In Electromagnetics Research Letters, Vol. 53, 127-135, 2015
Abstract
Two compact differential bandpass filters (BPFs) based on coupled-line resonators and loaded capacitors are proposed in this work. By properly designing the coupled resonator and the loaded capacitance of original filter model, differential-mode (DM) passband responses and common-mode (CM) rejection can be obtained .For validation, two differential BPFs named Filter I and Filter II are discussed and experimentally characterized. One more DM transmission zero generated by out-of-phase cross-coupling is employed to control the DM bandwidth and sharpen the selectivity in Filter I while lumped capacitors are loaded in Filter II to replace capacitive coupled resonators for miniaturized size. Both filters are centered at 4.5 GHz with about 9% DM fractional bandwidth (FBW), less than 1.5 dB insertion loss, more than 15 dB return loss, and wideband CM suppression with more than 18 dB rejection. Furthermore, the size of Filter II is substantially smaller than Filter I and previously reported differential BPFs.
Citation
Hui Wang, Yi Yang, Zhi-Hong Ren, and Cheng Feng, "Compact Differential Bandpass Filters Based on Coupled-Line Resonators with Improved Performance and Miniaturized Size," Progress In Electromagnetics Research Letters, Vol. 53, 127-135, 2015.
doi:10.2528/PIERL15030307
References

1. Cai, J. and X. D. Wang, "Electromagnetic compatibility (EMC) test method for vehicle-borne electronic information system," Command Information System and Technology, Vol. 5, No. 2, 83-87, Apr. 2014.

2. Hao, J. S. and Y. Wang, "Clutter suppression for ultra-wideband radar," Command Information System and Technology, Vol. 4, No. 3, 60-64, Jun. 2013.

3. Wang, X.-H., Q. Xue, and W.-W. Choi, "A novel ultra-wideband differential filter based on double-sided parallel-strip line," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 8, 471-473, Aug. 2010.
doi:10.1109/LMWC.2010.2050869

4. Wang, X.-H., H. Zhang, and B.-Z. Wang, "A novel ultra-wideband differential filter based on microstrip line structures," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 3, 128-130, Mar. 2013.
doi:10.1109/LMWC.2013.2243719

5. Wu, X.-H. and Q.-X. Chu, "Compact differential ultra-wideband bandpass filter with common-mode suppression," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 9, 456-458, Sep. 2012.
doi:10.1109/LMWC.2012.2213075

6. Lim, T.-B. and L. Zhu, "A differential-mode wideband bandpass filter on microstrip line for UWB application," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 10, 632-634, Oct. 2009.

7. Lim, T.-B. and L. Zhu, "Highly selective differential-mode wideband bandpass filter for UWB application," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 3, 133-135, Mar. 2011.
doi:10.1109/LMWC.2011.2104357

8. Zhu, H.-T., W.-J. Feng, W.-Q. Che, and Q. Xue, "Ultra-wideband differential bandpass filter based on transversal signal-interference concept," IET Electronics Letters, Vol. 47, No. 18, 1033-1035, Sep. 2011.
doi:10.1049/el.2011.2088

9. Feng, W.-J., W.-Q. Che, Y.-L. Ma, and Q. Xue, "Compact wideband differential bandpass filters using half-wavelength ring resonator," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 2, 81-83, Feb. 2013.
doi:10.1109/LMWC.2013.2239632

10. Naqui, J., A. Fernandez-Prieto, M. Duran-Sindreu, F. Mesa, J. Martel, F. Medina, and F. Martin, "Common-mode suppression in microstrip differential lines by means of complementary split ring resonators: Theory and application," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 10, 3023-3034, Oct. 2012.
doi:10.1109/TMTT.2012.2209675

11. Velez, P., J. Naqui, A. Fernandez-Prieto, M. Duran-Sindreu, J. Bonache, J. Martel, F. Medina, and F. Martin, "Differential bandpass filter with common-mode suppression based on open split ring resonators and open complementary split ring resonators," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 1, 22-24, Jan. 2013.
doi:10.1109/LMWC.2012.2236083

12. Feng, W.-J., W.-Q. Che, T.-F. Eibert, and Q. Xue, "Compact wideband differential bandpass filter based on the double-sided parallel-strip line and transversal signal-interaction concepts," IET Microwave, Antennas & Propagation, Oct. 2011.

13. Feng, W.-J. and W.-Q. Che, "Novel wideband differential bandpass filters based on T-shaped structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 6, 1560-1568, Jun. 2012.
doi:10.1109/TMTT.2012.2188538

14. Wang, H., K.-W. Tam, S.-K. Ho, and W. Wu, "A novel compact capacitive loaded differential bandpass filter," Asia-Pacific Microwave Conference, 933-935, Seoul, Korea, 2013.

15. Wang, H., K.-W. Tam, W.-W. Choi, W.-Y. Zhuang, S.-K. Ho, W. Kang, and W. Wu, "Analysis of coupled cross-shaped resonator and its application to differential bandpass filters design," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 12, 2942-2953, Dec. 2014.
doi:10.1109/TMTT.2014.2364814

16. Available: http://www.dilabs.com.
doi:10.1109/TMTT.2014.2364814

17. Matthaei, G.-L., L. Young, and E.-M.-T. Jones, Microwave Filters, Impedance-matching Networks, and Coupling Structures, Artech House, Chapter 5, Norwood, MA, USA, 1985.

18. Alley, G. D., "Interdigital capacitors and their application to lumped-element microwave integrated circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 18, No. 12, 1028-1033, Dec. 1970.
doi:10.1109/TMTT.1970.1127407

19. Pettenpaul, E., H. Kapust, A. Weisgerber, H. Mampe, J. Luginsland, and I. Wolff, "CAD models lumped elements on GaAs up to 18 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 2, 294-304, Feb. 1988.
doi:10.1109/22.3518