Vol. 53
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-05-22
An Ultra-Wideband Twin-Patch Monopole Antenna with Band-Rejection Characteristic
By
Progress In Electromagnetics Research Letters, Vol. 53, 77-82, 2015
Abstract
To suppress electromagnetic interference at 5.5-GHz WLAN (5.15-5.825 GHz) band operation, a novel ultra-wideband (UWB) design of a slotted twin-patch monopole antenna with a band-rejection characteristic is presented. The proposed antenna with a simple structure has a large impedance bandwidth, defined by 10-dB return loss, covering the range from 2.95 to 10.85 GHz, and a tunable cutoff band from 5.18 to 6 GHz for band-operation suppression. Measured monopole-like radiation pattern and in-band average gain of about 2.3 dBi have also been obtained, simultaneously, with good agreement to the simulated results.
Citation
Chao-Ming Wu, and Yi-Hong Liu, "An Ultra-Wideband Twin-Patch Monopole Antenna with Band-Rejection Characteristic," Progress In Electromagnetics Research Letters, Vol. 53, 77-82, 2015.
doi:10.2528/PIERL15030107
References

1. Yazdi, M. and N. Komjani, "A compact band-notched UWB planar monopole antenna with parasitic elements," Progress In Electromagnetics Research Letters, Vol. 24, 129-138, 2011.
doi:10.2528/PIERL11043002

2. Tang, Z. J., X. F. Wu, and J. Zhan, "Novel compact band-notched UWB antenna using convex-shaped slot patch," Microwave and Optical Technolgy Lett., Vol. 57, 201-203, 2015.
doi:10.1002/mop.28820

3. Ojaroudi, N. and N. Ghadimi, "Band-notched UWB slot antenna," Microwave and Optical Technology Lett., Vol. 56, 1744-1747, 2014.
doi:10.1002/mop.28438

4. Chu, Q. X., C. X. Mao, and H. Zhu, "A compact notched band UWB slot antenna with sharp selectivity and controllable bandwidth," IEEE Trans. Antennas Propag., Vol. 61, 3961-3966, 2013.
doi:10.1109/TAP.2013.2261575

5. Fallahi, R., A. A. Kalteh, and M. G. Roozbahani, "A novel UWB elliptical slot antenna with band-notched characteristics," Progress In Electromagnetics Research, Vol. 82, 127-136, 2008.
doi:10.2528/PIER08022603

6. Azim, R. and M. T. Islam, "Compact planar UWB antenna with band notch characteristics for WLAN and DSRC," Progress In Electromagnetics Research, Vol. 133, 391-406, 2013.
doi:10.2528/PIER12090601

7. Ojaroudi, N., "Application of protruded strip resonators to design an UWB slot antenna with WLAN band-notched characteristic," Progress In Electromagnetics Research C, Vol. 47, 111-117, 2014.
doi:10.2528/PIERC14010606

8. Wang, Y. F., T. A. Denidni, Q. S. Zeng, and G. Wei, "Band-notched UWB rectangular dielectric resonator antenna," IET Electronics Letters, Vol. 50, 483-484, 2014.
doi:10.1049/el.2014.0188

9. Malik, J. and M. V. Kartikeyan, "Band-notched UWB antenna with raised cosine-tapered ground plane," Microwave and Optical Technolgy Lett., Vol. 56, 2576-2579, 2014.
doi:10.1002/mop.28648

10. Azim, R., A. T. Mobashsher, and M. T. Islam, "UWB antenna with notched band at 5.5GHz," IET Electronics Letters, Vol. 49, 922-924, 2013.
doi:10.1049/el.2013.1476

11. Pandey, G. K., H. S. Singh, P. K. Bharti, and M. K. Meshram, "Design of WLAN band notched UWB monopole antenna with stepped geometry using modified EBG structure," Progress In Electromagnetics Research B, Vol. 50, 201-217, 2013.
doi:10.2528/PIERB13030101

12. Seo, Y. S., J. W. Jung, H. J. Lee, and Y. S. Lim, "Design of trapezoid monopole antenna with band-notched performance for UWB," IET Electronics Letters, Vol. 48, 673-674, 2012.
doi:10.1049/el.2012.0650

13. Naser-Moghadasi, M., R. A. Sadeghzadeh, T. Sedghi, T. Aribi, and B. S. Virdee, "UWB CPW-fed fractal patch antenna with band-notched function employing folded T-shaped element," IEEE Antennas and Wireless Propag. Lett., Vol. 12, 504-507, 2013.
doi:10.1109/LAWP.2013.2256455

14. Zang, J. and X. Wang, "A compact C-shaped printed UWB antenna with band-notched characteristic," Progress In Electromagnetics Research Letters, Vol. 43, 15-23, 2013.
doi:10.2528/PIERL13081702

15. Chuang, C. T., T. J. Lin, and S. J. Chung, "A band-notched UWB monopole antenna with high notch-band-edge selectivity," IEEE Trans. Antennas Propag., Vol. 60, 4492-4499, 2012.
doi:10.1109/TAP.2012.2207327