Vol. 43
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-07-10
Attenuation Properties of Dusty Media Using Mie Scattering Solution
By
Progress In Electromagnetics Research M, Vol. 43, 9-18, 2015
Abstract
A more realistic model is developed to predict the specific attenuation when electromagnetic signals propagate through dusty media (dust storms). The model is based on Mie approximation for the scattering of electromagnetic signal by a spherical particle. Variation of the dust particles dimensions is considered in this model. Reliable published values for dust dielectric constant are used for computations over the frequency range from 2 GHz to 100 GHz, (i.e. S-band, X band, K-band, Ka-band, Ku-band and W-band). The model outcome is compared with the results from other models suggested in literature. The effect of air humidity on specific attenuation is also investigated.
Citation
Sami M. Sharif, "Attenuation Properties of Dusty Media Using Mie Scattering Solution," Progress In Electromagnetics Research M, Vol. 43, 9-18, 2015.
doi:10.2528/PIERM15022403
References

1. Vyas, M., P. Tomar, S. Rankawat, and D. R. Godara, "Effect of sand and dust storms on millimeter wave propagation signals in western Rajasthan region at 35 GHz," International Journal of Scientific Research And Education, Vol. 2, No. 11, 2457-2462, 2014.

2. Dong, Q., Y.-L. Li, J. Xu, H. Zhang, and M. Wang, "Backscattering characteristics of millimeter wave radar in sand and dust storms," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 9, 1075-1084, 2014.
doi:10.1080/09205071.2014.905213

3. Harb, K., S. Abdillah, and S. Abdul-Jauwad, "Dust & sand (DUSA) storms impact on LEO satellite microwave radio links," 2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC), 442-447, 2014.

4. Dong, Q.-F., Y.-L. Li, J.-D. Xu, H. Zhang, and M.-J. Wang, "Effect of sand and dust storms on microwave propagation," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 910-916, 2012.
doi:10.1109/TAP.2012.2223446

5. Sharif, S. M., "Dust storms properties related to microwave signal propagation," University of Khartoum Engineering Journal, Vol. 1, No. 1, 2011.

6. Bong, Q. F., J. I. D. Xu, Y. L. Li, H. Zhang, and M. J.Wang, "Calculation of microwave attenuation effect due to charged sand particles," Journal of Infrared, Millimeter and Terahertz Waves, Vol. 32, No. 1, 55-63, 2010.

7. Sharif, S. M., "Clutter and backscattering of dust storms at the X-band," Sudan Engineering Society Journal, Vol. 41, No. 34, 31-36, 1997.

8. Brussaard, G. and P. A. Watson, Atmospheric Modelling and Millimeter Wave Propagation, Ghapman & Hall, 1995.

9. Ansari, A. J. and B. G. Evans, "Microwave propagation in sand and dust storms," IEE Proceedings F (Communications, Radar and Signal Processing), Vol. 129, No. 5, 315-322, 1982.
doi:10.1049/ip-f-1.1982.0047

10. Bashir, S. O. and N. J. McEwan, "Microwave propagation in dust storms: A review," IEE Proceedings H (Microwaves, Antennas and Propagation), Vol. 133, No. 3, 241-247, 1986.
doi:10.1049/ip-h-2.1986.0043

11. Ghobrial, S. I. and S. M. Sharif, "Microwave attenuation and cross polarization in dust storms," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 4, 418-425, 1987.
doi:10.1109/TAP.1987.1144120

12. Goldhirsh, J., "A parameter review and assessment of attenuation and backscatter properties associated with dust storms over desert regions in the frequency range of 1 to 10 GHz," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 6, 1121-1127, 1982.
doi:10.1109/TAP.1982.1142932

13. Ahmed, S., A. A. Ali, and M. A. Alhaider, "Airborne dust size analysis for tropospheric propagation of millimetric waves into dust storms," IEEE Trans. on Geoscience and Remote Sensing, Vol. 25, No. 5, 593-599, 1987.
doi:10.1109/TGRS.1987.289838

14. Islam, M. R., Z. E. Elshaikh, O. Khalifa, A. H. M. Zahirul Alom, and S. Khan, "Fade margin analysis due to duststorm based on visibility data measured in a desert," American Journal of Applied Sciences, Vol. 7, No. 4, 551-555, 2010.
doi:10.3844/ajassp.2010.551.555

15. Collin, R. E., Antenna and Radiowave Propagation, McGraw-Hill, 1985.

16. Goldhirsh, J., "Attenuation and backscatter from derived two-dimensional duststorm model," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 12, 1703-1711, 2001.
doi:10.1109/8.982449

17. Islam, M. R., Z. E. Elshaikh, O. Elshaikh, O. O. Khalifa, A. H. M. Zahirul Alam, S. Khan, and A. W. Naji, "Prediction of signal attenuation due to duststorms using Mie scattering," IIUM Engineering Journal, Vol. 11, No. 1, 71-87, 2010.

18. Ghobrial, S. I., "Effect of hydroscopic water on dielectric constant of dust at X-band," Electronics Letters, Vol. 16, No. 10, 393-394, 1980.
doi:10.1049/el:19800277

19. Sharif, S. M. and S. I. Ghobrial, "X-band measurements of dust dielectric constant," Proc. IRSI Commission F, Symp., 143-147, Belgium, 1983.

20. Yang, R., Z. Wu, and J. You, "The study of MMW and MW attenuation considering multiple scattering effect in sand and dust storms at slant paths," International Journal of Infrared and Millimeter Waves, Vol. 24, No. 8, Aug. 2003.
doi:10.1023/A:1024869824556

21. Sharif, S. M., "Chemical and mineral composition of dust and its effect on dielectric constant," IEEE Trans. on Geosciences and Remote Sensing, Vol. 33, No. 2, 353-359, 1995.
doi:10.1109/36.377935

22. Haddad, S., M. J. Salman, and R. K. Jha, "Effect of dust/sandstorms on some aspects of microwave propagation," Proc. URSI Commission F Symposium, ESA Publication SP-194, 113-116, Louvainla-la-Neuve, Belgium, 1983.

23. Bogland, R. A., Physics of Blown Sand and Desert Dunes, Methuen, 1971.

24. Gillete, D. A., "On the production of soil wind erosion aerosols having the potential for long range transport," J. Rech. Atmos, B, 735-744, 1974.

25. Sharif, S. M., "Dust particle-size distribution," International Geosciences and Remote Sensing Symp., IGARRS’87, Ann Arbon, Michigan, USA, 1987.

26. Alhaider, M. A. and A. A. Ali, "Experimental studies on millimeterwave and infrared propagation in arid land: The effect of sand storms," Sixth International Conference on Antennas and Propagation ICAP, 1989.

27. Elshaikh, Z. E. O., M. R. Islam, O. O. Khalifa, and M. J. E. Salami, "Duststorm measurements for the prediction of attenuation on microwave signals in Sudan," International Conference on Computer and Communication Engineering 2008 (ICCCE 08), 1181-1185, Kuala Lumpur, May 2008.

28. Ghobrial, S. I., S. M. Sharif, M. E. Ateem, and M. El Tigani, "Dust storms in Sudan: Intensity and particles; characteristics," Proc. Jordan IEEE’85 Conf., 326-328, Jordan, 1985.

29. Elshaikh, Z. E. O., M. R. Islam, O. O. Khalifa, and H. E. Abd-El-Raouf, "Mathematical model for the prediction of microwave signal attenuation due to duststorm," Progress In Electromagnetics Research M, Vol. 6, 139-153, 2009.
doi:10.2528/PIERM09021906