Vol. 62
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-04-07
Propagation and Characterization of Novel Graded and Linearly Chirped Type's of Refractive Index Profile Symmetric Planar Slab Waveguide by Numerical Means
By
Progress In Electromagnetics Research B, Vol. 62, 255-275, 2015
Abstract
We characterize the alpha power and chirped types of refractive index profile planar slab waveguide in terms of TE/TM mode study, waveguide dispersion study, mode profile properties, power confinement factor and universal b-V graph. Our own developed finite element method has been efficiently applied to analyze the symmetric planar slab waveguide having a complicated refractive index profile. There is a requirement for a high accuracy of numerical technique to analyze the arbitrary refractive index waveguide, as at some frequency the TE and TM modes are smeared on each other, and it is difficult to distinguish them while analyzing. This paper successfully demonstrates the different TE/TM modes supported by the waveguide with respect to alpha-power and linearly chirped types of refractive index profile. The main contribution of our work is to identify the TE/TM mode numerically for a complex refractive index planar slab waveguide and to characterize them in terms of their performance parameters. Then we apply the mode propagation concept to estimate the propagation phenomena in alpha-power and chirped types of refractive index profile waveguide. All the results presented in this paper are simulated in MATLAB only. Our study reveals that waveguide dispersion and number of allowed guided modes are small while for the case of triangular index profile followed by chirped profile and maximum for step index profile case. Hence triangular and chirped types of refractive index profile waveguide seem to be more efficient for long haul optical communication systems.
Citation
Sanjeev Kumar Raghuwanshi, and B. M. Azizur Rahman, "Propagation and Characterization of Novel Graded and Linearly Chirped Type's of Refractive Index Profile Symmetric Planar Slab Waveguide by Numerical Means," Progress In Electromagnetics Research B, Vol. 62, 255-275, 2015.
doi:10.2528/PIERB15021605
References

1. Zheludev, N. I., "Photonic-plasmonic devices: A 7-nm light pen makes its mark," Nat. Nanotechnol., Vol. 5, 10-11, 2010.
doi:10.1038/nnano.2009.460

2. Politano, A. and G. Chiarello, "Quenching of plasmons modes in air-exposed grapheme-Ru contacts for plasmonic devices," Appl. Phy. Lett., Vol. 102, 201608, 2013.
doi:10.1063/1.4804189

3. He, X. Y., Q. J. Wang, and S. F. Yu, "Numerical study of gain-assisted terahertz hybrid plasmonic waveguide," Plasmonics, Vol. 7, 571-577, 2012.
doi:10.1007/s11468-012-9344-6

4. Baqir, M. A. and P. K. Choudhary, "Dispersion characteristics of optical fibers under PEMC twist," Journal of Electromagnetic Wave and Application, Vol. 28, No. 17, 2124-2134, 2014.
doi:10.1080/09205071.2014.971974

5. Li, Z., K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, "Correlation between incident and emission polarization in nanowire surface plasmons waveguide," Nano. Lett., Vol. 10, 1831-1835, 2010.
doi:10.1021/nl100528c

6. Politano, A. and G. Chiarello, "Unravelling suitable grapheme-metal contacts for grapheme-based plasmonic device," Nanoscale, Vol. 5, 8251-8220, 2013.
doi:10.1039/c3nr02027d

7. Raghuwanshi, S. K. and S. Kumar, "Waveguide dispersion characteristics of graded/linearly chirp type’s refractive index profile of planar slab optical waveguide by using the modified finite element method," Journal of Optics, Springer, Aug. 12, 2014, Doi: 10.1007/s12596-014-0220-y.

8. Mussina, R., D. R. Selviah, F. A. Fernnandez, A. G. Tijhuis, and B. P. D. Hon, "A rapid accurate technique to calculate the group delay dispersion and dispersion slop of arbitrary radial refractive index profile weakly-guiding optical fibers," Progress In Electromagnetics Research, Vol. 145, 99-113, 2014.

9. Walpita, L. M., "Solution for planar optical waveguide equation by selecting zero elements in a characteristics matrix," Journal of the Optical Society of America, Vol. A2, 592-602, 1985.

10. Rahman, B. M. A., "Finite element analysis of optical waveguides," Progress In Electromagnetics Research, Vol. 10, 187-216, 1995.

11. Honkis, T. H., "Analysis of optical waveguide with arbitrary index profile using an immersed interface method," International Journal of Modern Physics C, Vol. 22, No. 7, 687-710, 2011.
doi:10.1142/S0129183111016543

12. Okoshi, T. and K. Okamoto, "Analysis of wave propagation in inhomogeneous optical fibers using a varational method," IEEE Trans. on Microwave Theory and Tech., Vol. 22, No. 11, 938-945, 1974.
doi:10.1109/TMTT.1974.1128389

13. Popescu, V. A., "Determination of normalized propagation constant for optical waveguide by using second order variational method," Journal of Optoelectronics and Advanced Mat., Vol. 7, No. 5, 2783-2786, 2005.

14. Rostami, A. and H. Motavali, "Asymptotic iteration method: A power approach for analysis of inhomogeneous dielectric slab waveguide," Progress In Electromagnetics Research B, Vol. 4, 171-182, 2008.
doi:10.2528/PIERB08011701

15. Chaudhuri, P. R. and S. Roy, "Analysis of arbitrary index profile planar optical waveguide and multilayer nonlinear structure: A simple finite differences algorithm," Opt. Quant. Electron., Vol. 39, 221-237, 2007.
doi:10.1007/s11082-007-9076-6

16. Sadiku, M. N. O., Numerical Techniques in Electromagnetic, 2nd Ed., CRC Press LLC, 1992.

17. Booton, R. C., Computational Methods for Electromagnetic and Microwave, John Wiley and Sons, 1992.

18. Kasim, N. M., A. B. Mohammad, and M. H. Ibrahim, "Optical waveguide modeling based on scalar finite difference scheme," Journal Teknologi., Vol. 45(D), 181-194, 2006.

19. Gambling, W. A., D. N. Payne, and H. Matsumura, "Cut-off frequency in radically inhomogeneous single mode fiber," Electron. Letters, Vol. 13, No. 5, 130-140, 1977.
doi:10.1049/el:19770092

20. Zhuangqi, C., Y. Jiang, and C. Yingli, "Analytical investigation of planar optical waveguide with arbitrary index profiles," Optical and Quant. Electronics, Vol. 31, 637-644, 1999.

21. Chiang, K. S., "Review of numerical and approximation methods for modal analysis of general dielectric waveguide," Opt. Quant. Electron., Vol. 26, 113-134, 1994.
doi:10.1007/BF00384667

22. Xu, W., Z. H. Wang, and Z. M. Huang, "Propagation constant of a planar dielectric waveguide with arbitrary refractive index variation," Opt. Lett., Vol. 18, 805-807, 1993.

23. Okamoto, K., Fundamentals of Optical Waveguide, Academic Press, 2006.

24. Sharma, E. K., I. C. Goyal, and A. K. Ghatak, "Calculation of cut-off frequencies in optical fibers for arbitrary profiles using the matrix method," IEEE Journal of Quant. Electron., Vol. 17, No. 12, 2317-2320, 1981.
doi:10.1109/JQE.1981.1071045

25. Okamoto, K. and T. Okoshi, "Analysis of wave propagation in optical fibers having core with α-power refractive distribution and uniform cladding," IEEE Trans. on Microwave Theory and Tech., Vol. 24, No. 7, 416-421, 1976.
doi:10.1109/TMTT.1976.1128869

26. Raghuwanshi, S. K. and S. Kumar, "Analytical expression for dispersion properties of circular core dielectric waveguide without computing d2β/dk2 numerically," I-manager’s Journal on Future Engineering & Technology, Vol. 7, No. 3, 26-34, 2012.

27. Raghuwanshi, S. K., S. Kumar, and A. Kumar, "Dispersion characteristics of complex refractive-index planar slab optical waveguide by using finite element method," Optik, Vol. 125, No. 20, 5929-5935, Elsevier, Oct. 2014.
doi:10.1016/j.ijleo.2014.05.049

28. Ghatak, A. K. and K. Thyagarajan, Optical Electronics: Introduction to Fiber Optics, Cambridge Press, 1999.

29. Hotate, K. A. and T. Okoshi, "Formula giving single-mode limit of optical fiber having arbitrary refractive index profile," Electron. Letters, Vol. 14, No. 8, 246-248, 1978.
doi:10.1049/el:19780167

30. Rostami, A. and S. K. Moyaedi, "Exact solution for the TM mode in inhomogeneous slab waveguides," Laser Physics, Vol. 14, No. 12, 1492-1498, 2004.

31. Survaiya, S. P. and R. K. Shevagaonkar, "Dispersion characteristics of an optical fiber having linear chirp refractive index profile," IEEE Journal of Lightwave Tech., Vol. 17, No. 10, 1797-1805, 1999.
doi:10.1109/50.793753

32. Raghuwanshi, S. K. and S. Talabattula, "Dispersion and peak reflectivity analysis in a non-uniform FBG based sensors due to arbitrary refractive index profile," Progress In Electromagnetics Research B, Vol. 36, 249-265, 2012.
doi:10.2528/PIERB11081704

33. Hadley, G. R., "Transparent boundary condition for beam propagation," Opt. Lett., Vol. 16, 624-626, 1991.
doi:10.1364/OL.16.000624