Vol. 59
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-04-04
A New Design Method for Patch Antenna with Low RCS and High Gain Performance
By
Progress In Electromagnetics Research Letters, Vol. 59, 77-84, 2016
Abstract
In this letter, a new design for patch antenna, which can obtain low radar cross section (RCS) and high gain performance simultaneously, is proposed on the basis of a metamaterial (MTM) superstrate. The superstrate consists of two metallic layers with different patterns on both sides of a dielectric substrate. Low reflection and transmission are obtained from the upper surface which can absorb most of the incident wave to reduce the antenna RCS. The bottom surface, which has partial reflectivity, is used to construct a Fabry-Perot resonance cavity with the ground plane of the patch antenna to improve its directivity. Measured results show that the proposed antenna can achieve RCS reduction in a broad frequency band ranging from 2 to 14 GHz with maximum RCS reduction value of 28.3 dB, and high gain performance is enhanced by 4.3 dB at most compared with the original antenna in the working frequency band extending from 10.9 GHz to 12 GHz. The measured results agree well with the simulated ones.
Citation
Li-Li Cong, Xiang-Yu Cao, Wenqiang Li, and Yi Zhao, "A New Design Method for Patch Antenna with Low RCS and High Gain Performance," Progress In Electromagnetics Research Letters, Vol. 59, 77-84, 2016.
doi:10.2528/PIERL15012801
References

1. Jiang, W., S. X. Gong, T. Hong, and X. Wang, "Fan-shaped antenna with low RCS for ultra-wideband application," Acta Electronic Sinica, Vol. 38, 2162-2165, 2010.

2. Yang, H. H., X. Y. Cao, J. Gao, T. Liu, J. J. Ma, X. Yao, and W. Q. Li, "Design of low radar cross section microstrip antanna based on metamaterial absorber," Acta Physica Sinica, Vol. 62, 0641031-0641037, 2013.

3. Pozar, D. M., "RCS reduction for a microstrip antenna using a normally biased ferrite substrate," IEEE Microw. Guided Wave Lett., Vol. 2, 196-198, 1992.
doi:10.1109/75.134353

4. Yang, J. and Z. Shen, "A thin and broadband absorber using double-square loops," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 388-391, 2007.
doi:10.1109/LAWP.2007.903496

5. Ma, Y., Q. Chen, J. Grant, et al. "A terahertz polarization insensitive dual band metamaterial absorber," Optics Letters, Vol. 36, 945-947, 2011.
doi:10.1364/OL.36.000945

6. Genovesi, S., F. Costa, and A. Monorchio, "Low profile array with reduced radar cross section by using hybrid frequency selective surfaces," IEEE Transactions on Antennas and Propag., Vol. 60, 2327-2335, 2012.
doi:10.1109/TAP.2012.2189701

7. Weiglhofer, W. S. and A. Lakhtakia, Introduction to Complex Mediums for Optics and Electromagnetics [M], SPIE Press, 2003.
doi:10.1117/3.504610

8. Genovesi, S., F. Costa, and A. Monorchio, "Low profile array with reduced radar cross section by using hybrid frequency selective surfaces," IEEE Transactions on Antennas and Propag., Vol. 60, 2327-2335, 2012.
doi:10.1109/TAP.2012.2189701

9. Zhou, H., S. B. Qu, B. Q. Lin, et al. "Filter-antenna consisting of conical FSS radome and monopole antenna," IEEE Transactions on Antennas and Propag., Vol. 60, 3040-3045, 2012.
doi:10.1109/TAP.2012.2194648

10. Li, Y. Q., H. Zhang, Y. Q. Fu, et al. "RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 473-476, 2008.
doi:10.1109/LAWP.2008.2001548

11. Tan, Y., N. Yuan, Y. Yang, and Y. Fu, "Improved RCS and efficient waveguide slot antenna," Electronics Letters, Vol. 47, 582-583, 2011.
doi:10.1049/el.2011.0842

12. Liu, T., X. Y. Cao, J. Gao, Q. R. Zheng, W. Q. Li, and H. H. Yang, "RCS reduction of waveguide slot antenna with metamaterial absorber," IEEE Transactions on Antennas and Propag., Vol. 61, 1479-1484, 2013.
doi:10.1109/TAP.2012.2231922

13. Zhang, J. J., J. H. Wang, and M. E. Chen, "RCS reduction of patch array antenna by electromagnetic band-gap structure," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1048-1051, 2012.
doi:10.1109/LAWP.2012.2215832

14. Ge, Y., K. P. Esselle, and T. S. Bird, "The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas," IEEE Transactions on Antennas and Propag., Vol. 60, 743-750, 2012.
doi:10.1109/TAP.2011.2173113

15. Pan, W. B., C. Huang, P. Chen, X. L. Ma, C. G. Hu, and X. G. Luo, "A low-RCS and high-gain partially reflecting surface antenna," IEEE Transactions on Antennas and Propag., Vol. 62, 945-949, 2014.
doi:10.1109/TAP.2013.2291008