Vol. 53
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-04-10
Complex Impedance-Transformation Out-of-Phase Power Divider with High Power-Handling Capability
By
Progress In Electromagnetics Research Letters, Vol. 53, 13-19, 2015
Abstract
A novel 180˚ out-of-phase power divider with complex-source to complex-load impedance transformation and high power-handling capability is proposed in this paper. It is composed of three double-sided parallel-strip lines (DSPSLs), a conduct plane in the middle as common ground, and two resistors for heat sinking and high isolation. Based on the rigorous odd- and even-mode analytical methods, closed-form design equations about electrical parameters are obtained. To demonstrate our design theory, a practical three-layer out-of-phase power divider is designed, simulated and measured. The measured results show that the return losses |Sii| (i=1, 2, and 3) are all larger than 17 dB. The insertion loss |S21| (|S31|) is 3.6 dB (3.7 dB). The isolation |S23| is -24 dB, and the output phase difference is -177˚ at the operating frequency. Good agreements between the simulated and measured results verify our design theory.
Citation
Lulu Bei, Shen Zhang, and Kai Huang, "Complex Impedance-Transformation Out-of-Phase Power Divider with High Power-Handling Capability," Progress In Electromagnetics Research Letters, Vol. 53, 13-19, 2015.
doi:10.2528/PIERL15012006
References

1. Poe, D., J. Shao, O. Lee, H. L. Zhang, S. Y. Jung, and H. S. Kim, "Dual-band class-E RF PA design utilizing complex impedance transformers," 2013 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems, WMCS, Waco, TX, United States, Apr. 2013.

2. Lin, W. and Q. X. Chu, "A novel RFID tag antenna for matching complex impedances on 915 MHz and 2.45GHz bands," 2010 Asia-Pacific Microwave Conference, APMC, 2248-2251, Yokohama, Japan, Dec. 2010.

3. Liu, Y., Y. J. Zhao, S. B. Liu, Y. G. Zhou, and Y. Chen, "Multi-frequency impedance transformers for frequency-dependent complex loads," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 9, 3225-3235, 2013.
doi:10.1109/TMTT.2013.2274779

4. Ahn, H. R. and S. Nam, "3-dB power dividers with equal complex termination impedances and design methods for controlling isolation circuits," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 11, 3872-3883, 2013.
doi:10.1109/TMTT.2013.2281101

5. Zhang, W. W., Y. A. Liu, Y. L. Wu, W. M. Wang, M. Su, and J. C. Gao, "A complex impedance-transforming coupled-line Balun," Progress In Electromagnetics Research Letters, Vol. 48, 123-128, 2014.
doi:10.2528/PIERL14062402

6. Michaelsen, R. S., T. K. Johansen, and K. M. Tamborg, "Analysis and design of complex impedance transformingMarchand baluns," 20th International Conference on Microwaves, Radar and Wireless Communications, MIKON 2014, Gdansk, Poland, Jun. 2014.

7. Chen, J.-X., C. H. K. Chin, K. W. Lau, and Q. Xue, "180? out-of-phase power divider based on double-sided parallel striplines," Electron. Lett., Vol. 42, No. 21, 1229-1230, Oct. 2006.
doi:10.1049/el:20061767

8. Lu, Y. L., G. L. Dai, X. C. Wei, and E. P. Li, "A broadband out-of-phase power divider for high power applications using through ground via (TGV)," Progress In Electromagnetics Research, Vol. 137, 653-667, 2013.
doi:10.2528/PIER13010705

9. Milligan, T. A., "Transmission-line transformation between arbitrary impedances," IEEE Trans. Microw. Theory Tech. (Letters), Vol. 24, No. 3, 159, Mar. 1976.
doi:10.1109/TMTT.1976.1128802

10. Potok, M. H. N., "Comments on ‘Transmission-line transformation between arbitrary impedances’," IEEE Trans. Microw. Theory Tech., Vol. 25, No. 1, 77, Jan. 1977.
doi:10.1109/TMTT.1977.1129040