Vol. 152
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-06-19
Generation of Complex Source Point Expansions from Radiation Integrals (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 152, 17-31, 2015
Abstract
This paper discusses methods for expanding fields radiated by arbitrary sourcesenclosed by a certain minimum sphere in termsof Complex Source Point (CSP) beams. Two different approaches are reviewed; the first one is based on a spectral radiation integral, where the Fourier-spectrum is obtained by far field matching. The second approach consists of two steps: first, the equivalence principle is applied to a sphere enclosing the real sources, and a continuous equivalent electric current distribution is obtained in terms of spherical waves; then, the continuous current is extended to complex space and its SW components are properly filtered and sampled to generate the discrete set of CSPs. In both cases, the final resultis a compact finite series representation with a number of terms that matches the degrees of freedom of arbitrary radiated fields;it is particularly efficient when the fields are highly directional and the observation domain is limited to a given angular sector. The fact that the CSPs rigorously respect Maxwell's equations ensures the validity of the expansion from near to far zone and allows one to incorporate the CSP representation in a generalized admittance matrix formalism for the analysis of complex problems.
Citation
Enrica Martini, and Stefano Maci, "Generation of Complex Source Point Expansions from Radiation Integrals (Invited Paper)," Progress In Electromagnetics Research, Vol. 152, 17-31, 2015.
doi:10.2528/PIER15011702
References

1. Wylde, R. J., "Millimetre-wave Gaussian beam-mode optics and corrugated feed horns," IEE Proceedings H, Microwaves, Optics and Antennas, Vol. 131, No. 4, 258-262, Aug. 1984, Doi: 10.1049/ip-h-1.1984.0053.
doi:10.1049/ip-h-1.1984.0053

2. McEwan, N. J. and P. F. Goldsmith, "Gaussian beam techniques for illuminating reflector antennas," IEEE Trans. Antennas Propag., Vol. 37, No. 3, 297-304, Mar. 1989.
doi:10.1109/8.18725

3. Imbriale, W. A. and D. J. Hoppe, "Recent trends in the analysis of quasioptical systems," Millenium Conf. on Antennas Propag., Davos, Switzerland, 2000.

4. Withington, S., J. A. Murphy, and K. G. Isaak, "Representation of mirrors in beam waveguides as inclined phase-transforming surfaces," Infrared Phys. Technol., Vol. 36, No. 3, 723-734, Apr. 1995.
doi:10.1016/1350-4495(94)00047-O

5. Siegman, A., "Hermite-Gaussian functions of complex argument as optical-beam eigenfunctions," J. Opt. Soc. Am., Vol. 63, 1093-1094, 1973.
doi:10.1364/JOSA.63.001093

6. Hern`andez-Figueroa, H. E., M. Zamboni-Rached, and E. Recami (eds.), Localized Waves, Chapter 6, Wiley-Interscience, Hoboken, NJ, 2008.
doi:10.1002/9780470168981

7. Steinberg, B. Z., E. Heyman, and L. B. Felsen, "Phase space methods for radiation from large apertures," Radio Sci., Vol. 26, 219-227, 1991.
doi:10.1029/90RS01501

8. Shlivinski, A., E. Heyman, A. Boag, and C. Letrou, "A phase-space beam summation formulation for ultrawideband radiation: A multiband scheme," IEEE Trans. Antennas Propag., Vol. 52, No. 8, 2042-2056, Aug. 2004, Doi: 10.1109/TAP.2004.832513.
doi:10.1109/TAP.2004.832513

9. Shlivinski, A., E. Heyman, and A. Boag, "A phase-space beam summation formulation for ultrawideband radiation — Part II: A multiband scheme," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 948-957, Mar. 2005.
doi:10.1109/TAP.2004.842683

10. Shlivinski, A., E. Heyman, and A. Boag, "A pulsed beam summation formulation for short pulse radiation based on windowed radon transform (WRT) frames," IEEE Trans. Antennas Propag., Vol. 53, No. 9, 3030-3048, Sep. 2005.
doi:10.1109/TAP.2005.854550

11. Arnold, J. M., "Phase-space localization and discrete representation of wave fields," J. Opt. Soc. Am. A, Vol. 12, No. 1, 111-123, Jan. 1995.
doi:10.1364/JOSAA.12.000111

12. Chou, H.-T., P. H. Pathak, and R. J. Burkholder, "Application of Gaussian-ray basis functions for the rapid analysis of electromagnetic radiation from reflector antennas," IEE Proc. Microw. Antennas Propag., Vol. 150, 177-183, 2003.
doi:10.1049/ip-map:20030506

13. Chou, H.-T. and P. H. Pathak, "Uniform asymptotic solution for electromagnetic reflection and diffraction of an arbitrary Gaussian beam by a smooth surface with an edge," Radio Sci., Vol. 32, No. 4, 1319-1336, Jul./Aug. 1997.
doi:10.1029/97RS00713

14. Skokic, S., M. Casaletti, S. Maci, and S Sorensen, "Complex conical beams for aperture field representations," IEEE Trans. Antennas Propag., Vol. 50, No. 2, 611-622, Feb. 2011, Doi: 10.1109/TAP.2010.2096379.
doi:10.1109/TAP.2010.2096379

15. Sarkar, T. K. and O. Pereira, "Using the matrix pencil method to estimate the parameters of a sum of complex exponentials," IEEE Antennas and Propagation Magazine, Vol. 37, No. 1, 48-55, Feb. 1995, Doi: 10.1109/74.370583.
doi:10.1109/74.370583

16. Deschamps, G. A., "The Gaussian beam as a bundle of complex rays," Electron. Lett., Vol. 7, No. 23, 684-685, 1971.
doi:10.1049/el:19710467

17. Felsen, L. B., "Complex-source-point solutions of the field equations and their relation to the propagation and scattering of Gaussian beams," Proc. Symp. Math., Vol. 18, 39-56, 1975.

18. Heyman, E. and L. B. Felsen, "Gaussian beam and pulsed-beam dynamics: Complex-source and complex-spectrum formulations within and beyond paraxial asymptotics," J. Opt. Soc. Am. A, Vol. 18, No. 7, 1588-1611, 2001.
doi:10.1364/JOSAA.18.001588

19. Yao, D., "Complex source representation of time harmonic radiation from a plane aperture," IEEE Trans. Antennas Propag., Vol. 43, No. 7, 720-723, Jul. 1995.

20. Chow, Y. L., J. J. Yang, D. G. Fang, and G. E. Howard, "A closed form spatial Green function for the microstrip substrate," IEEE Trans. Microw. Theory Tech., Vol. 39, No. 3, 588-592, Mar. 1991.
doi:10.1109/22.75309

21. He, J., T. Yu, N. Geng, and L. Carin, "Method of moments analysis of electromagnetic scattering from a general three-dimensional dielectric target embedded in a multilayered medium," Radio Sci., Vol. 35, No. 2, 305-313, 2000.
doi:10.1029/1999RS002230

22. Vipiana, F., A. Polemi, S. Maci, and G. Vecchi, "A mesh-adapted closed-form regular kernel for 3D singular integral equations," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1687-1698, Jun. 2008.
doi:10.1109/TAP.2008.923334

23. Bucci, O. and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Trans. Antennas Propag., Vol. 37, No. 7, 918-926, 1989, Doi: 10.1109/8.29386.
doi:10.1109/8.29386

24. Bucci, O., "Computational complexity in the solution of large antenna and scattering problems," Radio Sci., Vol. 40, RS6S16, 2005, Doi: 10.1029/2004RS003196.

25. Stupfel, B. and Y. Morel, "Singular value decomposition of the radiation operator: Application to model-order and far-field reduction," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1605-1615, 2008, Doi: 10.1109/TAP.2008.923311.
doi:10.1109/TAP.2008.923311

26. Bogush, Jr., A. J. and R. E. Elkins, "Gaussian field expansions for large aperture antennas," IEEE Trans. Antennas Propag., Vol. 34, No. 2, 228-243, 1986.
doi:10.1109/TAP.1986.1143795

27. Prakash, V. V. S. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations," Microwave Opt. Technol. Lett., Vol. 36, No. 2, 95-100, 2003.
doi:10.1002/mop.10685

28. Matekovits, L., V. Laza, and G. Vecchi, "Analysis of large complex structures with the synthetic-functions approach," IEEE Trans. Antennas Propag., Vol. 55, No. 9, 2509-2521, 2007, Doi: 10.1109/TAP.2007.90407.
doi:10.1109/TAP.2007.904073

29. Casaletti, M., S. Maci, and G. Vecchi, "Diffraction-like synthetic functions to treat the scattering from large polyhedral metallic object," Appl. Comput. Electromagn. Soc., Vol. 24, No. 2, 161-173, 2009.

30. Tap, K., P. H. Pathak, and R. J. Burkholder, "Exact complex source point beam expansions for electromagnetic fields," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3379-3390, 2011, Doi: 10.1109/TAP.2011.2161438.
doi:10.1109/TAP.2011.2161438

31. Martini, E., G. Carli, and S. Maci, "A domain decomposition method based on a generalized scattering matrix formalism and a complex source expansion," Progress In Electromagnetics Research B, Vol. 19, 445-473, 2010.
doi:10.2528/PIERB10012110

32. Norris, A. N. and T. B. Hansen, "Exact complex source representations of time-harmonic radiation," Wave Motion, Vol. 25, 127-141, 1997.
doi:10.1016/S0165-2125(96)00036-4

33. Martini, E. and S. Maci, "A closed-form conversion from spherical-wave- to complex-point-source-expansion," Radio Sci., Vol. 46, RS0E22, 2011, Doi: 10.1029/2011RS004665.

34. Devaney, A. J. and E. Wolf, "Radiating and nonradiating classical current distributions and the fields they generate," Phys. Rev. D, Vol. 8, 1044-1047, 1973.
doi:10.1103/PhysRevD.8.1044

35. Sadourny, R., A. Arakawa, and Y. Mintz, "Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere," Mon. Wea. Rev., Vol. 96, 351-356, 1968, Doi: http://dx.doi.org/10.1175/1520-0493(1968)096<0351:IOTNBV>2.0.CO;2.
doi:10.1175/1520-0493(1968)096<0351:IOTNBV>2.0.CO;2

36. Rumsey, V. H., "Some new forms of Huygens’ principle," IRE Transactions on Antennas and Propagation, Vol. 7, No. 5, 103-116, Dec. 1959, Doi: 10.1109/TAP.1959.1144766.
doi:10.1109/TAP.1959.1144766

37. Harrington, R. F., Time Harmonic Electromagnetics, McGraw-Hill, New York, 1961.

38. Martini, E., G. Carli, and S. Maci, "An equivalence theorem based on the use of electric currents radiating in free space," IEEE Antennas Wireless Propag. Lett., Vol. 7, 421-424, 2008, Doi: 0.1109/LAWP.2008.2001764.
doi:10.1109/LAWP.2008.2001764

39. Hansen, J. E., Spherical Near-field Antenna Measurements, Peter Peregrinus, London, 1988.
doi:10.1049/PBEW026E

40. Lebedev, V. I., "A quadrature formula for the sphere of the 131st algebraic order of accuracy," Dokl. Math., Vol. 59, No. 3, 477-481, 1999.

41. Heilpern, T., E. Heyman, and V. Timchenko, "A beam summation algorithm for wave radiation and guidance in stratified media," J. Acoust. Soc. Am., Vol. 121, No. 4, 1856-1864, 2007, Doi: 10.1121/1.2537221.
doi:10.1121/1.2537221