Vol. 52
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-04-07
Compact Branch-Line Coupler Using Uniplanar Spiral Based CRLH-TL
By
Progress In Electromagnetics Research Letters, Vol. 52, 113-119, 2015
Abstract
In this letter, a compact branch-line coupler using a new type of uniplanar composite right/left-handed transmission line (CRLH-TL) is proposed. The transmission line is obtained by etching spiral structure and series meandered capacitive gaps at both ends on the host line. With the aid of lumped element equivalent circuit model and dispersion relations, the CRLH property of the line is studied. By using the proposed structures, the 90-degree phase shift 35.35 ohm and 50 ohm transmission lines are designed for a compact branch-line coupler operating at 1 GHz. It's occupied size is only 32.5% of that of the conventional one. Its uniplanar prototype makes it very useful for wireless communication systems requiring high encapsulation quality.
Citation
Ji Zhang, Jianfeng Tao, Binfeng Zong, and Cheng Zhou, "Compact Branch-Line Coupler Using Uniplanar Spiral Based CRLH-TL," Progress In Electromagnetics Research Letters, Vol. 52, 113-119, 2015.
doi:10.2528/PIERL15011414
References

1. Pozar, D. M., Microwave Engineering, 3rd Edition, Wiley, New York, 2005.

2. Chang, W.-S. and C. Y. Chang, "A high slow-wave factor microstrip structure with simple design formulas and its application to microwave circuit design," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 3376-3383, 2012.
doi:10.1109/TMTT.2012.2216282

3. Wang, J.-P., J. Ni, S. Zhao, and Y.-X. Guo, "Compact microstrip ring branch-line coupler with harmonic suppression," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2119-2126, 2009.
doi:10.1163/156939309790109216

4. Sung, Y.-J., C.-S. Ahn, and Y.-S. Kim, "Size reduction and harmonic suppression of rat-race hybrid coupler using defected ground structure," IEEE Microwave and Wireless Components Letters, Vol. 14, 7-9, 2004.
doi:10.1109/LMWC.2003.821499

5. Tang, C.-W. and M.-G. Chen, "Synthesizing microstrip branch-line couplers with predetermined compact size and bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 1926-1934, 2007.
doi:10.1109/TMTT.2007.904331

6. Tang, C-W., M.-G. Chen, and C.-H. Tsai, "Miniaturization of microstrip branch-line coupler with dual transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 18, 185-187, 2008.
doi:10.1109/LMWC.2008.916798

7. Chen, W.-L. and G.-M. Wang, "Exact design of novel miniaturised fractal-shaped branch-line couplers using phaseequalising method," IET Microwaves, Antennas & Propagation, Vol. 2, 773-780, 2008.
doi:10.1049/iet-map:20080074

8. Ghali, H. and T. A. Moselhy, "Miniaturized fractal rat-race, branch-line, and coupled-line hybrids," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 2513-2520, 2004.
doi:10.1109/TMTT.2004.837154

9. Ma, Y.-B., H.-W. Zhang, and Y.-X. Li, "Novel symmetrical coupled-line directional coupler based on resonant-type composite right/left-handed transmission lines," Progress In Electromagnetics Research, Vol. 140, 213-226, 2013.
doi:10.2528/PIER13041803

10. Bonache, J., G. Siso, M. Gil, A. Iniesta, J. Garcıa-Rincon, and F. Martın, "Application of composite right/left handed (CRLH) transmission lines based on complementary split ring resonators (CSRRs) to the design of dual-band microwave components," IEEE Microwave and Wireless Components Letters, Vol. 18, 524-526, 2008.
doi:10.1109/LMWC.2008.2001011

11. Lin, I.-H., M.-D. Vincentis, C. Caloz, and T. Itoh, "Arbitrary dual-band components using composite right/left-handed transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 14, 1142-1149, 2004.
doi:10.1109/TMTT.2004.825747

12. Dong, Y.-D. and T. Itoh, "Application of composite right/left-handed half-mode substrate integrated waveguide to the design of a dual band rat-race coupler," IEEE MTT-S International Microwave Symposium Digest, 712-715, 2010.

13. Gil, M., J. Bonache, J. Garcia-Garcia, et al. "New left handed microstrip lines with complementary split rings resonators (CSRRs) etched in the signal strip," IEEE MTT-S International Microwave Symposium Digest, 1419-1422, 2007.

14. Dong, Y.-D. and T. Itoh, "Metamaterial-based antennas," Proceedings of the IEEE, Vol. 100, 2271-2285, 2012.
doi:10.1109/JPROC.2012.2187631

15. Lu, K., G.-M. Wang, C.-X. Zhang, and Y.-W. Wang, "Design of miniaturized branch-line coupler based on novel spiral-based resonators," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2244-2253, 2011.
doi:10.1163/156939311798147024

16. Duran-Sindreu, M., G. Siso, J. Bonache, and F. Martın, "Planar multi-band microwave components based on the generalized composite right/left handed transmission line concept," IEEE Transactions on Microwave Theory and Techniques, Vol. 12, 3882-3890, 2010.