Vol. 147
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-02-08
Performance Enhancement of Microwave Sub-Wavelength Imaging and Lens-Type DOA Estimation Systems by Using Signal Processing Techniques (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 147, 203-226, 2014
Abstract
In this work, we show how we can improve the image resolution capabilities of a Phase Conjugating (PC) lens as well as the angular resolution of Luneburg lens antennas by employing signal processing techniques, such as the Correlation Method (CM), the Minimum Residual Power Search Method (MRPSM), the sparse reconstruction method, and the Singular-Value-Decomposition (SVD)-based basis matrix method. In the first part, we apply these techniques for sub-wavelength imaging in the microwave regime by combining them with the well-known phase conjugation principle. We begin by considering a one-dimensional microwave sub-wavelength imaging problem handled by using three signal processing methods, and then we move on to two- or three-dimensional problems by using the SVD-based basis matrix method. Numerical simulation results show that we can enhance the resolution significantly by using these methods, even if the measurement plane is not located in the very near-field region of the source. We describe these proposed algorithms in detail and study their abilities to resolve at the sub-wavelength level. Next, we investigate the sparse reconstruction method for a normal Luneburg lens antenna, and the Correlation Method and the SVD-based basis matrix method for a flat-base Luneburg lens antenna to estimate the Direction-of-Arrival (DOA). Numerical simulation results show that the signal processing techniques are capable of enhancing the angular resolution of the Luneburg lens antenna, enabling the lens to locate multiple targets with different scattering cross-sections, and achieving higher angular resolution.
Citation
Xiang Gu, Raj Mittra, Chiara Pelletti, Sidharath Jain, and Yunhua Zhang, "Performance Enhancement of Microwave Sub-Wavelength Imaging and Lens-Type DOA Estimation Systems by Using Signal Processing Techniques (Invited Paper)," Progress In Electromagnetics Research, Vol. 147, 203-226, 2014.
doi:10.2528/PIER15011408
References

1. Nieto-Vesperinas, M. and E. Wolf, "Phase conjugation and symmetries with wave fields in free space containing evanescent components," J. Opt. Soc. Amer., Vol. 2, No. 9, 1429-1434, 1985.
doi:10.1364/JOSAA.2.001429

2. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

3. Maslovski, S. and S. Tretyakov, "Phase conjugation and perfect lensing," J. Appl. Phys., Vol. 94, No. 7, 4241-4243, 2003.
doi:10.1063/1.1604935

4. Rosny, J. de, G. Lerosey, and M. Fink, "Theory of electromagnetic time-reversal mirrors," IEEE Trans. Antennas Propag., Vol. 58, No. 10, 3139-3149, 2010.
doi:10.1109/TAP.2010.2052567

5. Shiroma, G. S., R. Y. Miyamoto, J. D. Roque, J. M. Cardenas, and W. A. Shiroma, "A high-directivity combined self-beam/null-steering array for secure point-to-point communications," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 5, 838-844, 2007.
doi:10.1109/TMTT.2007.895405

6. Gaikovich, K. P., "Subsurface near-field scanning tomography," Phys. Rev. Lett., Vol. 98, No. 18, 183902-183902, 2007.
doi:10.1103/PhysRevLett.98.183902

7. Aliferis, I., T. Savelyev, M. J. Yedlin, J.-Y. Dauvignac, A. Yarovoy, C. Pichot, and L. Ligfhart, "Comparison of the diffraction stack and time-reversal imaging algorithms applied to short-range UWB scattering data," IEEE Int. Conf. Ultra-Wideband (ICUWB 2007), Singapore, Sep. 24-26, 2007.

8. Katko, A. R., S. Gu, J. P. Barrett, B.-I. Popa, G. Shvets, and S. A. Cummer, "Phase conjugation and negative refraction using nonlinear active metamaterials," Phys. Rev. Lett., Vol. 105, No. 12, 123905-123905, 2010.
doi:10.1103/PhysRevLett.105.123905

9. Belov, P. A. and Y. Hao, "Sub-wavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B, Vol. 73, No. 11, 113110-113110, 2006.
doi:10.1103/PhysRevB.73.113110

10. Eleftheriades, G. and A. Wong, "Holography-inspired screens for sub-wavelength focusing in the near field," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 4, 236-238, 2008.
doi:10.1109/LMWC.2008.918871

11. Merlin, R., "Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing," Science, Vol. 317, No. 5840, 927-929, 2007.
doi:10.1126/science.1143884

12. Malyuskin, O. and V. Fusco, "Far field subwavelength source resolution using phase conjugating lens assisted with evanescent-to-propagating spectrum conversion," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 459-468, 2010.
doi:10.1109/TAP.2009.2037713

13. Memarian, M. and G. V. Eleftheriades, "Evanescent-to-propagating wave conversion in sub-wavelength metal-strip gratings," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 12, 3893-3907, 2012.
doi:10.1109/TMTT.2012.2221734

14. Ge, G.-D., B.-Z. Wang, D. Wang, D. Zhao, and S. Ding, "Subwavelength array of planar monopoles with complementary split rings based on far-field time reversal," IEEE Trans. Antennas Propag., Vol. 59, No. 1, 4345-4350, 2011.

15. Katko, A. R., G. Shvets, and S. A. Cummer, "Phase conjugation metamaterials: Particle design and imaging experiments," Journal of Optics, Vol. 14, No. 11, 114003-114003, 2012.
doi:10.1088/2040-8978/14/11/114003

16. Park, Y. K., "Subwavelength light focusing and imaging via wavefront shaping in complex media," Progress In Electromagnetics Research Symposium Abstracts, Guangzhou, China, August 25-28, 2014.

17. Sidorenko, P., Y. Shechtman, Y. C. Eldar, O. Cohen, and M. Segev, "Sparsity-based sub-wavelength imaging and super-resolution in time-resolved and spectroscopic instruments," Progress In Electromagnetics Research Symposium Abstracts, Guangzhou, China, August 25-28, 2014.

18. Mittra, R. (Ed.), Computational Electromagnetics --- Recent Advances and Engineering Applications, Chapter 16, 553-574, Springer, New York, 2013.

19. Gu, X., C. Pelletti, R. Mittra, and Y. Zhang, "Resolution enhancement of phase-conjugating lenses by using signal processing algorithms," IEEE Antennas Wireless Propag. Lett., Vol. 13, 511-514, 2014.

20. Gu, X., C. Pelletti, R. Mittra, and Y. Zhang, "Signal processing approach to electromagnetic sub-wavelength imaging," IEEE Antennas and Propagation Society International Symposium (APS/URSI 2013), Orlando, Florida, July 7-13, 2013.

21. Gu, X., R. Mittra, and Y. Zhang, "Electromagnetic sub-wavelength imaging using the basis matrix method in conjunction with singular value decomposition (SVD) algorithm," IEEE Antennas and Propagation Society International Symposium (APS/URSI 2014), Memphis, TN, July 6-11, 2014.

22. Mittra, R., X. Gu, and Y. Zhang, "Signal processing approach to realizing enhanced resolution from imaging systems such as lenses," XXXIth URSI General Assembly and Scientific Symposium (URSI/GASS 2014), Beijing, China, August 17-23, 2014.

23. Balanis, C. A., Modern Antenna Handbook, Wiley, 2008.
doi:10.1002/9780470294154

24. Lafond, O., M. Himdi, H. Merlet, and P. Lebars, "An active reconfigurable antenna at 60 GHz based on plate inhomogeneous lens and feeders," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1672-1678, 2013.
doi:10.1109/TAP.2012.2237003

25. Luneburg, R. K., Mathematical Theory of Optics, University of California Press, 1964.

26. James, G., A. Parfitt, J. Kot, and P. Hall, "A case for the Luneburg lens as the antenna element for the square kilometre array radio telescope," Radio Science Bulletin, No. 293, 32-37, June 2000.

27. Hua, C., X. Wu, N. Yang, and W. Wu, "Air-filled parallel-plate cylindrical modified Luneberg lens antenna for multiple-beam scanning at millimeter-wave frequencies ," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 1, 436-443, 2013.
doi:10.1109/TMTT.2012.2227780

28. Liang, M., X. Yu, S.-G., Rafael, W.-R. Ng, M. E. Gehm, and H. Xin, "Direction of arrival estimation using Luneburg lens," IEEE International Microwave Symposium (IMS) Digest (MTT), Vol. 1, No. 3, June 17-22 2012.

29. Jain, S. and R. Mittra, "Flat-base broadband multibeam Luneburg lens for wide angle scan," IEEE Antennas and Propagation Society International Symposium (APS/URSI 2014), Memphis, TN, July 6-11, 2014.

30. Gu, X., S. Jain, R. Mittra, and Y. Zhang, "Enhancement of angular resolution of a flat-base Luneburg lens antenna by using correlation method," Progress In Electromagnetics Research M, Vol. 37, 203-211, 2014.

31. Mittra, R., C. Pelletti, N. L. Tsitsas, and G. Bianconi, "A new technique for efficient and accurate analysis of FSSs, EBGs and metamaterials," Microw. Opt. Techn. Lett., Vol. 54, No. 4, 1108-1116, 2011.
doi:10.1002/mop.26730

32. Pelletti, C., G. Bianconi, R. Mittra, A. Monorchio, and K. Panayappan, "Numerically efficient method-of-moments formulation valid over a wide frequency band including very low frequencies," IET Microw. Antennas Propag., Vol. 6, No. 1, 46-51, 2012.
doi:10.1049/iet-map.2011.0251

33. FEKO Suite 6.2 [Online], Available: www.feko.info.

34. Donoho, D. L., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

35. Balanis, C. A., Antenna Theory --- Analysis and Design, 2nd Ed., John Wiley & Sons, 1982.

36. Mohimani, H., M. Babaie-Zadeh, and C. Jutten, "A fast approach for overcomplete sparse decomposition based on smoothed L0 norm," IEEE Trans. Signal Process., Vol. 57, No. 1, 289-301, 2009.
doi:10.1109/TSP.2008.2007606

37. Berg, E. V. D. and M. P. Friedlander, "Sparse optimization with least-squares constraints," SIAM J. OPTIM., Vol. 21, No. 4, 1201-1229, 2011.
doi:10.1137/100785028

38. Yu, W., X. Yang, Y. Liu, R. Mittra, and A. Muto, Advanced FDTD Methods: Parallelization, Acceleration, and Engineering Applications, Artech House, Norwood, MA, USA, March 2011.

39. Guru, B. and H. Hiziroglu, Electromagnetic Field Theory Fundamentals, 2nd Ed., Cambridge University Press, 2004.
doi:10.1017/CBO9781139165297