Vol. 52
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-03-05
Wideband Circular Polarization Cavitay-Backed Slot Antenna for GNSS Applications
By
Progress In Electromagnetics Research Letters, Vol. 52, 31-36, 2015
Abstract
This paper presents a wideband circular polarization antenna for Global Navigation Satellite System (GNSS). By exciting four slots etched along each edge of a square ground with equal amplitude and 90° phase difference, good circular polarization performance is achieved. A novel radiation element, composed of back-side slot and front-side monopole, is proposed to realize a wideband radiation. Meanwhile, the feed network composed of Schiffman phase shifters and Wilkinson power dividers maintains this wideband performance. A backed cavity is used to suppress the backward radiation, therefore enhances the frontward gain. Measured results of the fabricated antenna show good agreement with the simulated ones. The main advantages of this antenna include its wide bandwidth, good circular polarization, high front to back ratio, low cost, and easy fabrication, which make it very attractive for GNSS terrestrial applications.
Citation
Chunhong Chen, Xinpeng Zhang, Shishan Qi, and Wen Wu, "Wideband Circular Polarization Cavitay-Backed Slot Antenna for GNSS Applications," Progress In Electromagnetics Research Letters, Vol. 52, 31-36, 2015.
doi:10.2528/PIERL15010607
References

1. Wang, J. J. H. and D. J. Triplett, "A simple feed for 4-arm planar travelling-wave (TW) antennas --- for GNSS (Global Navigation Satellite System) and other applications," IEEE Antennas and Propagation Society International Symposium, 1-2, Chicago, IL, USA, 2012.

2. Wang, J. J. H. and D. J. Triplett, "High-performance universal GNSS antenna and enhancement techniques to overcome its performance limitations," IEEE Antennas and Propagation Society International Symposium, 86-90, Toronto, ON, Canada, 2011.

3. Wang, J. J. H. and D. J. Triplett, "High-performance universal GNSS antenna based on SMM antenna technology," IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies for Wireless Communications, 644-647, Hangzhou, China, 2007.

4. Ning, B., J. Lei, Y. Cao, and L. Dong, "A conical quadrifilar helix antenna for GNSS applications," ISAP, Vol. 01, 543-546, 2013.

5. Strojny, B. T. and R. G. Rojas, "Bifilar helix GNSS antenna for unmanned aerial vehicle applications," IEEE Antenna and Wireless Propagation Letters, Vol. 13, 1164-1167, 2014.
doi:10.1109/LAWP.2014.2322577

6. Wei, T. and T. Xiong, "Minimized conical spiral antenna for GNSS," IEEE International Conference on Signal Processing, Communications and Computing, 1-4, KunMing, YunNan, China, 2013.

7. Vladimirov, V. M. and V. N. Shepov, "Patch slot antenna with circular polarization for the high-accuracy positioning using GNSS signals," 23th International Crimean Conference ``Microwave & Telecommunication”, 596-597, Sevastopol, Crimea, Ukraine, 2013.

8. Sun, C., H. Zheng, L. Zhang, and Y. Liu, "Wideband compact circularly polarized patch antenna loaded with shorting probe for GNSS applications," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 12, 1512-1521, 2014.
doi:10.1080/09205071.2014.932259

9. Li, X., L. Yang, and M. Wang, "Novel design of strip line L-shape probe-fed wideband metallic contact stacked patch antenna for GNSS application," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 16, 2010-2019, 2013.
doi:10.1080/09205071.2013.832394

10. Li, X., L. Yang, and M. Wang, "Novel design of multilayer wideband shorted annular stacked patch antenna for GNSS application with dual layer strip lines fed," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 9, 1187-1195, 2013.
doi:10.1080/09205071.2013.803444

11. Zhang, Y.-Q., X. Li, L. Yang, and S.-X. Gong, "Dual-band circularly polarized annular-ring microstrip antenna for GNSS applications," IEEE Antenna and Wireless Propagation Letters, Vol. 12, 615-618, 2013.
doi:10.1109/LAWP.2013.2260521

12. Maqsood, M., B. Bhandari, S. Gao, R. De Vos Van Steenwijk, and M. Unwin, "Dual-band circularly polarized antennas for GNSS remote sensing onboard small satellites," IEEE CSNDSP, Vol. 1, 86-90, 2010.

13. Basta, N., M. V. T. Heckler, and A. Dreher, "Study on a stacked patch antenna element for dual-band GNSS array," IEEE Antennas and Propagation Society International Symposium, 1-4, Toronto, ON, Canada, 2010.

14. Popugaev, A. E., R. Wansch, and S. Urquijo, "A novel high performance antenna for GNSS applications," The European Conference of Antennas and Propagation (EuCAP), 1-5, Edinburgh, UK, 2007.

15. Tatanikov, D., A. Astakhov, and A. Stepanenko, "Convex GNSS reference station antenna," IEEE International Conference on Multimedia Technology (ICMT), 6288-6291, Hangzhou, China, 2011.

16. Djebari, M. and A. Abdelhadi, "Compact multi-band rectangular slotted antenna for global navigation satellite systems (GNSS)," IEEE SIECPC, 1-5, Fira, Greece, 2013.

17. Clenet, M., M. Caillet, and Y. M. M. Antar, "Wideband circularly polarized antenna elements for GPS/GNSS applications developed at DRDC Ottawa," ANTEM-AMEREM, 1-4, Ottawa, ON, Canada, 2014.

18. Li, Q. and Z. Shen, "Inverted microstrip-feed cavity-backed slot antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 1, 98-101, 2002.

19. Mussler, M. E., "Cavity-backed slot antenna,", US patent 4733245, Mar. 1988.

20. Sanford, G. S., "Cavity-backed slot antenna,", US patent 6160522, Apr. 1998.

21. Johnson, R. S., "Wideband cavity-backed slot antenna,", US patent 2011/0273351 A1, Nov. 2011.