Vol. 52
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-03-16
High-Selectivity UWB Filters with Adjustable Transmission Zeros
By
Progress In Electromagnetics Research Letters, Vol. 52, 51-56, 2015
Abstract
This letter proposes a novel ultra-wideband (UWB) bandpass filter with compact size and high-selectivity performance. The filter has been studied and implemented through multiple-mode resonator (MMR) using new coupling schemes such as capacitive source-load (S-L) coupling/inductive source-load (S-L) coupling. By properly adjusting the length and width of these stubs, its first four resonant modes can be allocated within the 3.1-10.6 GHz passband, whereas its fifth resonant mode is placed above 16.0 GHz. Two transmission zeros (an inherent transmission zero and an additional transmission zero) can be produced. Moreover, the position of the additional zero can be controlled by adjusting the direct coupling inductance/capacitance. Simulated and measured results are in good agreement indicating that the proposed BPF has a passband (3.0-11.0 GHz)/(2.92-10.6 GHz) and a wide stopband width with 23 dB/25 dB attenuation up to 27.0 GHz. The group delay of the filter is relatively constant and less than 0.65 ns/0.52 ns over the operating pass band.
Citation
Liang Wang, Zhao-Jun Zhu, and Shang-Yang Li, "High-Selectivity UWB Filters with Adjustable Transmission Zeros," Progress In Electromagnetics Research Letters, Vol. 52, 51-56, 2015.
doi:10.2528/PIERL14122904
References

1. FCC "Revision of Part 15 of the Commission’s rules regarding ultra-wideband transmission systems,", Federal Communications Commission, Tech. Rep. ET-Docket 98-153, FCC02-48, Apr. 2002.

2. Saito, A., H. Harada, and A. Nishikata, "Development of band pass filter for ultra wideband (UWB) communication," Proc. IEEE Conf. Ultra Wideband Systems Technology, 76-80, 2003.

3. Ishida, H. and K. Araki, "Design and analysis of UWB bandpass filter with ring filter," IEEE MTT-S Int. Dig., 1307-1310, Jun. 2004.

4. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 11, 796-798, Nov. 2005.
doi:10.1163/156939308786375118

5. Wei, F., P. Chen, L. Chen, and X. W. Shi, "Design of a compact UWB bandpass filter with wide defected ground structure," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 13, 1783-1790, 2008.
doi:10.1163/156939310791285254

6. Fallahzadeh, S. and M. Tayarani, "A new microstrip UWB bandpass filter using defected microstrip structure," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 893-902, 2010.
doi:10.2528/PIERL08020902

7. Naghshvarian-Jahromi, M. and M. Tayarani, "Miniature planar UWB bandpass filters with circular slots in ground," Progress In Electromagnetics Research Letters, Vol. 3, 87-93, 2008.
doi:10.1163/156939308787543921

8. Lee, C.-H., I-C. Wang, and L.-Y. Chen, "MMR-based band-notched UWB bandpass filter design," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17–18, 2407-2415, 2008.
doi:10.2528/PIERC13053103

9. Zhao, J., J. Wang, and J.-L. Li, "Compact microstrip UWB bandpass filter with triple-notched band," Progress In Electromagnetics Research C, Vol. 44, 13-26, 2013.
doi:10.1109/LMWC.2007.897788

10. Wong, S. W. and L. Zhu, "EBG-embedded multiple-mode resonator for UWB bandpass filter with improved upper-stopband performance," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 6, 421-423, Jun. 2007.
doi:10.2528/PIER13120409

11. Peng, H., J. Zhao, and B. Wang, "Compact microstrip UWB bandpass filter with triple-notched bands and wide upper stopband," Progress In Electromagnetics Research, Vol. 144, 185-191, 2014.

12. Yao, B. Y., Y. G. Zhou, and Q. S. Cao, "Compact UWB bandpass filter with improved upper-stopband performance," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 6, 27-29, Jun. 2009.