Vol. 52
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-03-29
Design and Analysis of a Controllable Miniaturized Tri-Band Frequency Selective Surface
By
Progress In Electromagnetics Research Letters, Vol. 52, 105-112, 2015
Abstract
A novel miniaturized combined-element frequency selective surface (CEFSS) with simple design process is proposed for multiband applications. In this article, complementary meandered structures and complementary grid structures are combined to realize controllable tri-band characteristics, which allow the designed FSS to transmit different frequency signals at 3.3, 4.5 and 5.4 GHz while reflecting signals at 4.0 and 4.9 GHz. The miniaturized combined-element FSS in this paper has the advantage of smaller size comparing to traditional tri-band FSSs due to the use of meandered structures, which contributes to its independence of both angle and polarization. The associated equivalent circuit is provided to analyze its transmission characteristics. Furthermore, the performances of the proposed structure are evaluated by simulation and measurement, and they agree well.
Citation
Huangyan Li, and Qunsheng Cao, "Design and Analysis of a Controllable Miniaturized Tri-Band Frequency Selective Surface," Progress In Electromagnetics Research Letters, Vol. 52, 105-112, 2015.
doi:10.2528/PIERL14121803
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2005.
doi:10.1002/0471723770

2. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201

3. Huang, J., T. K. Wu, and S. W. Lee, "Tri-band frequency selective surface with circular ring elements," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 2, 166-175, 1994.
doi:10.1109/8.277210

4. Wang, D., W. Chen, Y. Chang, et al. "Combined-element frequency selective surfaces with multiple transmission poles and zeros," IET Microwaves, Antennas and Propagation, Vol. 8, No. 3, 186-193, 2014.
doi:10.1049/iet-map.2013.0329

5. Yang, G., T. Zhang, W. Li, et al. "A novel stable miniaturized frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1018-1021, 2010.
doi:10.1109/LAWP.2010.2089776

6. Liu, H. L., K. L. Ford, and R. J. Langley, "Design methodology for a miniaturized frequency selective surface using lumped reactive components," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, 2732-2738, 2009.
doi:10.1109/TAP.2009.2027174

7. Hu, X. D., X. L. Zhou, L. S. Wu, et al. "A miniaturized dual-band frequency selective surface (FSS) with closed loop and its complementary pattern," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1374-1377, 2009.

8. Wang, D., W. Che, Y. Chang, et al. "A low-profile frequency selective surface with controllable triband characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 468-471, 2013.
doi:10.1109/LAWP.2013.2254459

9. Wang, H. Q., "Analysis of double band properties of frequency selective surfaces by using equivalent circuit method," Systems Engineering and Electronics, Vol. 30, No. 11, 2054-2057, 2008.

10. Cui, Y., X. Y. Hou, and C. K. Tang, "Equivalent-circuit for analysis of performance of double-square-loop FSS," Journal of Missile and Guidance, Vol. 26, No. 2, 322-324, 2006.

11. Li, X. L., P. C. Zhao, and Z. Y. Zong, "Equivalent circuit model for frequency selective surface loaded with lumped capacitance," Journal of Nanjing University of Science and Technology, Vol. 35, No. 4, 539-542, 2011.

12. Bayatpur, F., "Metamaterial-inspired frequency-selective surfaces,", Ph.D. Dissertation, The University of Michigan, 2009.