Vol. 51
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-02-14
An Improved Wideband 180-Degree Hybrid Applied to Balanced Mixer
By
Progress In Electromagnetics Research Letters, Vol. 51, 109-115, 2015
Abstract
In this paper, an improved wideband millimeter-wave 180° hybrid is proposed to apply to balanced mixers and multipliers. The proposed hybrid consists of a transition of standard waveguide to suspended coplanar waveguide (SCPW) and a transition of SCPW to suspended stripline. According to the inherent electromagnetic field characteristics of the two transitions, the proposed hybrid has merits of broadband power distribution and high isolation, which does not rely on resonant circuits. The measured insertion losses and isolation of two transitions at Ka-band are typically 1.4 dB and 25 dB, respectively. To verify the application of the proposed hybrid, A W-band single balanced mixer based on the hybrid has been designed and fabricated. The measured single-sideband (SSB) conversion losses of the fabricated mixer are less than 9.5 dB for the radio frequency (RF) range from 80 to 108 GHz. The presented hybrid has been proven to be efficient for the design of millimeter-wave balanced mixers and could be well applied in multipliers and other integrated circuits.
Citation
Wei Zhao, Yong Zhang, Shuang Liu, Li Li, and Rui-Min Xu, "An Improved Wideband 180-Degree Hybrid Applied to Balanced Mixer," Progress In Electromagnetics Research Letters, Vol. 51, 109-115, 2015.
doi:10.2528/PIERL14121701
References

1. Schlecht, E. T., J. J. Gill, R. H. Lin, R. J. Dengler, and I. Mehdi, "A 520-590 GHz crossbar balanced fundamental Schottky mixer," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 7, 387-389, 2010.
doi:10.1109/LMWC.2010.2049432

2. Wells, J. A., N. J. Cronin, and P. H. Reece, "Rugged 94 GHz crossbar balanced mixer," IEE Proc. H --- Microwaves, Antennas Propag., Vol. 137, No. 4, 235-237, 1990.
doi:10.1049/ip-h-2.1990.0046

3. Erickson, N. R. and T. M. Goyette, "Terahertz Schottky-diode balanced mixers," 21st International Symposium on Space Terahertz Technology, 150-153, Oxford, March 2010.

4. Thomas, B., A. Maestrini, J. Gill, C. Lee, R. Lin, I. Mehdi, and P. de Maagt, "A broadband 835-900-GHz fundamental balanced mixer based on monolithic GaAs membrane Schottky diodes," IEEE Trans. Microw. Theory and Tech., Vol. 58, No. 7, 1917-1924, 2010.
doi:10.1109/TMTT.2010.2050181

5. Erickson, N., "High efficiency submillimeter frequency multipliers," IEEE MTT-S International Microwave Symposium Digest, 1990, 1301-1304, Dallas, May 1990.

6. Porterfield, D. W., T. W. Crowe, R. F. Bradley, and N. R. Erickson, "A high-power, fixed-tuned, millimeter-wave balanced frequency doubler," IEEE Trans. Microw. Theory and Tech., Vol. 47, No. 4, 419-425, 1999.
doi:10.1109/22.754875

7. Chattopadhyay, G., E. Schlecht, J. S. Ward, J. Gill, H. H. S. Javadi, F. Maiwald, and I. Mehdi, "An all solid-state broadband frequency multiplier chain at 1500 GHz," IEEE Trans. Microw. Theory and Tech., Vol. 52, No. 5, 1538-1547, 2004.
doi:10.1109/TMTT.2004.827042

8. Siles, J. V., A. Maestrini, B. Alderman, S. Davies, H. Wang, J. Treuttel, E. Leclerc, T. Narhi, and C. Goldstein, "A single-waveguide in-phase power-combined frequency doubler at 190 GHz," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 6, 332-334, 2011.
doi:10.1109/LMWC.2011.2134080

9. Guo, J., Z. Xu, C. Qian, and W.-B. Dou, "Design of a microstrip balanced mixer for satellite communication," Progress In Electromagnetics Research, Vol. 115, 289-301, 2011.
doi:10.2528/PIER11022109

10. Zhan, M. Z., Q. Xu, W. Zhao, Y. Zhang, R.-M. Xu, and W. Lin, "Planar W-band mixer with a novel IF-block," Progress In Electromagnetics Research C, Vol. 21, 205-215, 2011.
doi:10.2528/PIERC11022405

11. Simons, R. N., Coplanar Waveguide Circuits, Components, and Systems, John Wiley & Sons, 2001.
doi:10.1002/0471224758

12. Hesler, J. L., Planar Schottky diodes in submillimeter-wavelength waveguide receivers, Ph.D. Dissertation, University of Virginia, 1996.

13. Porterfield, D. W., Millimeter-wave planar varactor frequency doublers, Ph.D. Dissertation, University of Virginia, 1998.

14. Neamen, D. A. and B. Pevzner, Semiconductor Physics and Devices: Basic Principles, McGraw-Hill, 2003.