Vol. 41
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-03-10
The Second Order Finite Element Analysis of Eddy Currents Based on the T-Ω Method
By
Progress In Electromagnetics Research M, Vol. 41, 159-166, 2015
Abstract
Based on a proposed inexact Hodge decomposition, this paper describes a viable scheme using the second order finite elements in the T-Ω method considering multiply-connected regions for the eddy current problems. Several numerical examples have been presented to demonstrate the effectiveness of this scheme.
Citation
Bo He, Ping Zhou, Dingsheng Lin, and Chuan Lu, "The Second Order Finite Element Analysis of Eddy Currents Based on the T-Ω Method," Progress In Electromagnetics Research M, Vol. 41, 159-166, 2015.
doi:10.2528/PIERM14121604
References

1. Kriezis, E. E., T. D. Tsiboukis, S. M. Panas, and J. A. Tegopoulos, "Eddy currents: Theory and application," Proceedings of the IEEE, Vol. 80, No. 10, 1559-1589, Oct. 1992.
doi:10.1109/5.168666

2. Prenston, T. W. and A. B. J. Reece, "Solution of 3-D eddy current problems: The T-Omega method," IEEE Trans. Magn., Vol. 18, 486-491, 1982.
doi:10.1109/TMAG.1982.1061899

3. Webb, J. P. and B. Forghani, "A T-Omega method using hierarchal edge elements," Proc. Inst. Elec. Eng. Sci. Meas. Technol., Vol. 142, No. 2, 133-141, Mar. 1995.
doi:10.1049/ip-smt:19951439

4. Jin, J., The Finite Element Method in Electromagnetics, Wiley-IEEE Press, 2002.

5. He, B., P. Zhou, D. Lin, and C. Lu, "High order finite elements in T-Ω method considering multiply-connected regions," Compumag Conference, 5-20, 2013.

6. Bossavit, A., "Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism," IEE Proc., Vol. 135, No. 3, 179-187, 1988.

7. He, B. and F. L. Teixeira, "Compatible diecretizations for Maxwell equations," VDM Verlag, 28, 2009.

8. Webb, J. P. and B. Forghani, "A single scalar potential method for 3D magnetostatics using edge elements," IEEE Trans. Magn., Vol. 25, 4126-4128, 1989.
doi:10.1109/20.42543

9. He, B. and F. L. Teixeira, "On the degree of freedom of lattice electrodynamics," Phys. Lett. A, Vol. 336, 1-7, 2005.
doi:10.1016/j.physleta.2005.01.001

10. Deschamps, G. A., "Electromagnetics and differential forms," Proceedings of the IEEE, Vol. 69, 676-696, 1981.
doi:10.1109/PROC.1981.12048

11. Lee, S., J. Lee, and R. Lee, "Hierarchical vector finite elements for analyzing waveguiding structures," IEEE Trans. on Microwave Theory and Techniques, Vol. 51, No. 5, 1897-1905, 2003.

12. Ren, Z., "Application of differential forms in the finite element formulation of electromagnetic problems," ICS Newsletter, Vol. 7, No. 3, 6-11, 2000.

13. Webb, J. P. and B. Forghani, "Hierarchal scalar and vector tetrahedra," IEEE Trans. Magn., Vol. 29, 1495-1498, 1993.
doi:10.1109/20.250686

14. Zienkiewicz, O. C., R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Butterworth-Heinemann, 2006.

15. Kettunen, L., K. Forsman, and A. Bossavit, "Discrete spaces for div and curl-free fields," IEEE Trans. Magn., Vol. 34, 2551-2554, 2002.

16. Ren, Z., "T-Ω formulation for eddy current problems in multiply connected regions," IEEE Trans. Magn., Vol. 38, 557-560, 2002.
doi:10.1109/20.996146

17. Demenko, A. and J. K. Sykulski, "Network representation of conducting regions in 3D finite element description of electrical machines," IEEE Trans. Magn., Vol. 44, No. 6, 714-717, 2008.
doi:10.1109/TMAG.2007.916391

18. Wojciechowski, R. M., A. Demenko, and J. K. Sykulski, "Inducted currents analysis in multiply connected conductors using reluctance-resistance networks," COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 29, No. 4, 908-918, 2010.
doi:10.1108/03321641011044325

19. Dlotko, P. and R. Specogna, "Lazy cohomology generators: A breakthrough in (co)homology computations for CEM," IEEE Trans. Magn., Vol. 50, No. 2, 577-580, 2014.
doi:10.1109/TMAG.2013.2281076

20. Simkin, J., S. C. Taylor, and E. X. Xu, "An efficient algorithm for cutting multiply connected regions," IEEE Trans. Magn., Vol. 40, No. 2, 707-709, 2004.
doi:10.1109/TMAG.2004.825037

21. Phung, A. T., O. Chadebec, P. Labie, Y. Le Floch, and G. Meunier, "Automatic cuts for magnetic scalar potential formulations," IEEE Trans. Magn., Vol. 41, No. 5, 1668-1671, 2005.
doi:10.1109/TMAG.2005.846105

22. Crager, J. C. and P. R. Kotiuga, "Cuts for the magnetic scalar potential in knotted geometries and force-free magnetic fields," IEEE Trans. Magn., Vol. 38, No. 2, 1309-1312, 2002.
doi:10.1109/TMAG.2002.996334

23. Gross, P. W. and P. R. Kotiuga, "Finite element-based algorithms to make cuts for magnetic scalar potentials: Topological constraints and computational complexity," Geometric Methods for Computational Electromagnetics, Vol. 32, 207-245, 2001.

24. http://www.compumag.org/jsite/team.html.

25. Biro, O., K. Preis, W. Renhart, K. R. Ritcher, and G. Vrisk, "Performance of different vector potential formulations in solving multiply connected 3D eddy current problems," IEEE Trans. Magn., Vol. 26, 438-441, 1990.
doi:10.1109/20.106347

26. Cheng, Z., N. Takahashi, Q. Hu, and C. C. Fan, "TEAM-based benchmark family: Problem 21/21 + 21," Proc. 4th Int. Conf. Computation in Electromagnetics, 2002.