Vol. 150
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-01-19
Resolution of the Frequency Diverse Metamaterial Aperture Imager
By
Progress In Electromagnetics Research, Vol. 150, 97-107, 2015
Abstract
The resolution of a frequency diverse compressive metamaterial aperture imager is investigated. The aperture consists of a parallel plate waveguide, in which an array of complementary, resonant metamaterial elements is patterned into one of the plates. Microwaves injected into the waveguide leak out through the resonant metamaterial elements, forming a spatially diverse waveform at the scene. As the frequency is scanned, the waveforms change, such that scene information can be encoded onto a set of frequency measurements. The compressive nature of the metamaterial imager enables image reconstruction from significantly reduced number of measurements. We characterize the resolution of this complex aperture by studying the simulated point spread function (PSF) computed using different image reconstruction techniques. We compare the imaging performance of the system with that expected from synthetic aperture radar (SAR) limits.
Citation
Okan Yurduseven, Mohammadreza F. Imani, Hayrettin Odabasi, Jonah Gollub, Guy Lipworth, Alec Rose, and David R. Smith, "Resolution of the Frequency Diverse Metamaterial Aperture Imager," Progress In Electromagnetics Research, Vol. 150, 97-107, 2015.
doi:10.2528/PIER14113002
References

1. Nikolova, N. K., "Microwave imaging for breast cancer," IEEE Microwave Magazine, Vol. 12, No. 7, 78-94, Dec. 2011.
doi:10.1109/MMM.2011.942702

2. Elsdon, M., O. Yurduseven, and D. Smith, "Early stage breast cancer detection using indirect microwave holography," Progress In Electromagnetics Research, Vol. 143, 405-419, 2013.
doi:10.2528/PIER13091703

3. Grzegorczyk, T. M., P. M. Meaney, P. A. Kaufman, R. M. di Florio-Alexander, and K. D. Paulsen, "Fast 3-D tomographic microwave imaging for breast cancer detection," IEEE Transactions on Medical Imaging, Vol. 31, No. 8, 1584-1592, Aug. 2012.
doi:10.1109/TMI.2012.2197218

4. Bindu, G. N., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802

5. Wang, Y. and A. E. Fathy, "Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 5, 1986-2000, May 2012.
doi:10.1109/TGRS.2011.2170694

6. Ahmad, F., M. G. Amin, and S. A. Kassam, "Synthetic aperture beamformer for imaging through a dielectric wall," IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, No. 1, 271-283, Jan. 2005.
doi:10.1109/TAES.2005.1413761

7. Dehmollaian, M., M. Thiel, and K. Sarabandi, "Through-the-wall imaging using differential SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1289-1296, May 2009.
doi:10.1109/TGRS.2008.2010052

8. Yang, Y., C. Zhang, and A. E. Fathy, "Development and implementation of ultra-wideband see-through-wall imaging system based on sampling oscilloscope," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 465-468, 2008.
doi:10.1109/LAWP.2008.2000829

9. Yurduseven, O., "Indirect microwave holographic imaging of concealed ordnance for airport security imaging systems," Progress In Electromagnetics Research, Vol. 146, 7-13, 2014.
doi:10.2528/PIER14032304

10. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 9, 1581-1592, Sep. 2001.
doi:10.1109/22.942570

11. Demirci, S., H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, "A study on millimeter-wave imaging of concealed objects: Application using back-projection algorithm," Progress In Electromagnetics Research, Vol. 128, 457-477, 2012.
doi:10.2528/PIER12050210

12. Martinez-Lorenzo, J. A., F. Quivira, and C. M. Rappaport, "SAR imaging of suicide bombers wearing concealed explosive threats," Progress In Electromagnetics Research, Vol. 125, 255-272, 2012.
doi:10.2528/PIER11120518

13. Moreira, A., P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, "A tutorial on synthetic aperture radar," IEEE Geoscience and Remote Sensing Magazine, Vol. 1, No. 1, 6-43, Mar. 2013.
doi:10.1109/MGRS.2013.2248301

14. Smith, D., O. Yurduseven, B. Livingstone, and V. Schejbal, "Microwave imaging using indirect holographic techniques," IEEE Antennas and Propagation Magazine, Vol. 56, No. 1, 104-117, Feb. 2014.
doi:10.1109/MAP.2014.6821762

15. Amineh, R. K., J. McCombe, and N. K. Nikolova, "Microwave holographic imaging using the antenna phaseless radiation pattern," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1529-1532, 2012.
doi:10.1109/LAWP.2012.2232275

16. Hunt, J., T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, "Metamaterial apertures for computational imaging," Science, Vol. 339, No. 6117, 310-313, Jan. 2013.
doi:10.1126/science.1230054

17. Lipworth, G., A. Mrozack, J. Hunt, D. Marks, T. Driscoll, D. Brady, and D. R. Smith, "Metamaterial apertures for coherent computational imaging on the physical layer," Journal of the Optical Society of America A, Vol. 30, No. 8, 1603-1612, Aug. 2013.
doi:10.1364/JOSAA.30.001603

18. Hunt, J., J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. Reynolds, D. Brady, and D. Smith, "Metamaterial microwave holographic imaging system," Journal of the Optical Society of America A, Vol. 31, 2109-2119, 2014.
doi:10.1364/JOSAA.31.002109

19. Kay, S. M., Fundamentals of Statistical Signal Processing, Volume II: Detection Theory, Prentice Hall Signal Processing Series, New Jersey, 1998.

20. Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 1st Edition, 12–31, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1987.

21. Bioucas-Dias, J. M. and M. A. T. Figueiredo, "A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration," IEEE Transactions on Image Processing, Vol. 16, No. 12, 2992-3004, Dec. 2007.
doi:10.1109/TIP.2007.909319