Vol. 51
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-01-08
A Simple Nanoscale Plasmonic Square-Shaped Ring Resonator Waveguide
By
Progress In Electromagnetics Research Letters, Vol. 51, 39-45, 2015
Abstract
A novel surface plasmon based square-shaped ring resonator with bending metaldielectric-metal input/output (I/O) waveguide at optical spectral range is investigated. The influence of various geometric parameters is studied in detail, with parallel finite difference time domain method. The results validate that vertical coupling disturbance can be efficiently suppressed by employing the modified I/O structure. The transmittance performance has all the resonant frequencies workable with better extinction ratios, higher finesse and higher Q-factors compared to the original plasmonic micro-ring resonator. From these analyses, it is found that the proposed waveguide is outstanding in aspects of the total field extinction and frequency selectivity characteristic.
Citation
Ya-Li Yan, Guang Fu, Yu Zhang, Shu-Xi Gong, and Xi Chen, "A Simple Nanoscale Plasmonic Square-Shaped Ring Resonator Waveguide," Progress In Electromagnetics Research Letters, Vol. 51, 39-45, 2015.
doi:10.2528/PIERL14112604
References

1. Tassin, P., T. Koschny, M. Kafesaki, and C. M. Soukoulis, "A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics," Nature Photonics, Vol. 6, No. 4, 259-264, 2012.
doi:10.1038/nphoton.2012.27

2. Kauranen, M. and A. V. Zayats, "Nonlinear plasmonics," Nature Photonics, Vol. 6, 737-748, 2012.
doi:10.1038/nphoton.2012.244

3. Politano, A., "Interplay of structural and temperature effects on plasmonic excitations at noblemetal interfaces," Philosophical Magazine, Vol. 92, No. 6, 768-778, 2012.
doi:10.1080/14786435.2011.634846

4. Politano, A., A. R. Marino, V. Formoso, D. Farias, R. Miranda, and G. Chiarello, "Quadratic dispersion and damping processes of π plasmon in monolayer graphene on Pt(111)," Plasmonics, Vol. 7, No. 2, 369-376, 2012.
doi:10.1007/s11468-011-9317-1

5. Politano, A., V. Formoso, and G. Chiarello, "Collective electronic excitations in thin Ag films on Ni(111)," Plasmonics, Vol. 8, No. 4, 1683-1690, 2013.
doi:10.1007/s11468-013-9587-x

6. Politano, A. and G. Chiarello, "Unravelling suitable graphene-metal contacts for graphene-based plasmonic devices," Nanoscale, Vol. 5, No. 17, 8215-8220, 2013.
doi:10.1039/c3nr02027d

7. Politano, A. and G. Chiarello, "Quenching of plasmons modes in air-exposed graphene-Ru contacts for plasmonic devices," Applied Physics Letters, Vol. 102, No. 20, 201608, 2013.
doi:10.1063/1.4804189

8. Yan, H. G., X. S. Li, B. Chandra, G. Tulevski, Y. Q. Wu, M. Freitag, W. J. Zhu, P. Avouris, and F. N. Xia, "Tunable infrared plasmonic devices using graphene/insulator stacks," Nature Nanotechnology, Vol. 7, No. 5, 330, 2012.
doi:10.1038/nnano.2012.59

9. Zheludev, N. I., "Photonic-plasmonic devices: A 7-nm light pen makes its mark," Nature Nanotechnology, Vol. 5, No. 1, 10-11, 2010.
doi:10.1038/nnano.2009.460

10. Politano, A., "Influence of structural and electronic properties on the collective excitations of Ag/Cu(111)," Plasmonics, Vol. 7, No. 1, 131-136, 2012.
doi:10.1007/s11468-011-9285-5

11. He, X. Y., Q. J. Wang, and S. F. Yu, "Numerical study of gain-assisted terahertz hybrid plasmonic waveguide," Plasmonics, Vol. 7, No. 3, 571-577, 2012.
doi:10.1007/s11468-012-9344-6

12. Okamoto, K., I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nature Material, Vol. 3, No. 9, 601-605, 2004.
doi:10.1038/nmat1198

13. Reineck, P., G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, "A solid-state plasmonic solar cell via metal nanoparticle self-assembly," Advanced Materials, Vol. 24, No. 35, 2012.

14. Yao, X. H., M. Tokman, and A. Belyanin, "Efficient nonlinear generation of THz plasmons in graphene and topological insulators," Physical Review Letters, Vol. 112, No. 5, 055501, 2014.
doi:10.1103/PhysRevLett.112.055501

15. Lu, L., B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, "Graphene plasmonics for tunable terahertz metamaterials," Nature Nanotechnology, Vol. 6, 630-634, 2011.

16. Takahara, J., S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Optics Letters, Vol. 22, 475-477, 1997.
doi:10.1364/OL.22.000475

17. Djabery, R., S. Nikmehr, and S. Hosseinzadeh, "Grating effects on sidelobe suppression in MIM plasmonic filters," Progress In Electromagnetics Research, Vol. 135, 271-280, 2013.
doi:10.2528/PIER12102809

18. Liaw, J. W., M. K. Kuo, and C. N. Liao, "Plasmon resonances of spherical and ellipsoidal nanoparticles," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1787-1794, 2005.
doi:10.1163/156939305775696865

19. Lee, K. H., I. Ahmed, R. S.M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonic applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.
doi:10.2528/PIER11042002

20. Berini, P., "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Physical Review B, Vol. 61, No. 15, 10484-10503, 2000.
doi:10.1103/PhysRevB.61.10484

21. Weeber, J. C., A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Physical Review B, Vol. 60, No. 12, 9061-9068, 1999.
doi:10.1103/PhysRevB.60.9061

22. Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature, Vol. 440, 508-511, 2006.
doi:10.1038/nature04594

23. Veronis, G. and S. Fan, "Modes of subwavelength plasmonic slot waveguides," Journal of Lightwave Technology, Vol. 25, No. 9, 2511-2521, 2007.
doi:10.1109/JLT.2007.903544

24. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937

25. Xu, Y., J. Zhang, and G. F. Song, "Slow surface plasmons in plasmonic grating waveguide," IEEE Photonics Technology Letters, Vol. 25, No. 5, 410-413, Jan. 2013.
doi:10.1109/LPT.2013.2238667

26. Song, Y., J.Wang, M. Yan, and M. Qiu, "Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter," Journal of Optics, Vol. 13, 2011.

27. Hosseini, A. and Y. Massoud, "Nanoscale surface plasmon based resonator using rectangular geometry," Applied Physics Letters, Vol. 90, 181102, 2007.
doi:10.1063/1.2734380

28. Liu, J. L., G. Y. Fang, H. F. Zhao, Y. Zhang, and S. T. Liu, "Plasmon flow control at gap waveguide junctions using square ring resonators," Journal of Physics D: Applied Physics, Vol. 43, 055103, 2010.
doi:10.1088/0022-3727/43/5/055103

29. Veronis, G. and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Applied Physics Letters, Vol. 83, 131102, 2005.
doi:10.1063/1.2056594

30. Chung, S. Y., C. Y. Wang, C. H. Teng, C. P. Chen, and H. C. Chang, "Simulations of dielectric and plasmonic waveguide-coupled ring resonators using the legendre pseudospectral time-domain method," Journal of Lightwave Technology, Vol. 30, No. 11, 1733-1742, 2012.
doi:10.1109/JLT.2012.2188851

31. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method, 3rd Ed., Artech House, 2005.

32. Lakshmikanthan, V. and D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications, Academic, 1988.

33. Guiaut, C. and K. Mahdjoubi, "A parallel FDTD algorithm using the MPI library," IEEE Antennas and Propagation Magazine, Vol. 43, 94-103, 2001.

34. Yu, W., R. Mittra, T. Su, Y. J. Liu, and X. L. Yang, Parallel Finite-difference Time-domain Method, Artech House, 2006.