Vol. 50
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-12-10
Compact Dual-Band Microstrip BPF with Multiple Transmission Zeros for Wideband and WLAN Applications
By
Progress In Electromagnetics Research Letters, Vol. 50, 79-84, 2014
Abstract
In this letter, a novel compact dual-band microstrip bandpass filter (BPF) with multiple transmission zeros is proposed using the third-order interdigital structure and dual-mode short stub center-loaded resonator (DSLR) for wideband and WLAN applications. The high impedance feedline for the filter with the folded DSLR can function as the quarter-wavelength resonator (QWR) for the third-order interdigital filter. Meanwhile, the folded DSLR can be adopted without an evident increase of the size of the compact interdigital filter. Three transmission zeros between two passbands and in the lower- and upper-stopbands can be created due to the cross coupling between two high impedance feedlines as well as between the input and output, and the intrinsic characteristic of the DSLR. Further, two inverse QWR coupling short stubs with different size loaded in the 50 Ω feedlines can generate four transmission zeros to improve the isolation and deepen the stopband. Finally, a compact dual-band BPF prototype is designed, and good agreement can be obtained between measured and simulated results.
Citation
Hong-Li Wang, Hong-Wei Deng, Yong-Jiu Zhao, and Hao Liu, "Compact Dual-Band Microstrip BPF with Multiple Transmission Zeros for Wideband and WLAN Applications," Progress In Electromagnetics Research Letters, Vol. 50, 79-84, 2014.
doi:10.2528/PIERL14111004
References

1. Deng, H. W., Y. J. Zhao, X. S. Zhang, W. Chen, and J. K. Wang, "Compact and high selectivity dual-band dual-mode microstrip BPF with single stepped-impedance resonator," Electron. Lett., Vol. 47, No. 5, 326-327, Mar. 2011.
doi:10.1049/el.2011.0054

2. Deng, H. W., Y. J. Zhao, L. Zhang, X. S. Zhang, and W. Zhao, "Dual-band BPF with DSIR and TSIR," Electron. Lett., Vol. 46, No. 17, 1205-1206, Aug. 2010.
doi:10.1049/el.2010.0995

3. Liu, A.-S., T.-Y. Huang, and R.-B. Wu, "A dual wideband filter design using frequency mapping and stepped-impedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 12, 2921-2929, Dec. 2008.
doi:10.1109/TMTT.2008.2007357

4. Qshima, S., K. Wada, R. Murata, and Y. Shimakata, "Multilayer dual-band bandpass filter in low-temperature co-fired ceramic substrate for ultra-wideband applications," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 3, 614-623, Mar. 2010.
doi:10.1109/TMTT.2010.2040337

5. Xin, J., W.Wu, and C. Miao, "Compact and sharp skirts microstrip dual-mode dual-band bandpass filter using a single quadruple-mode resonator (QMR)," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 3, 1104-1113, Mar. 2013.
doi:10.1109/TMTT.2013.2238949

6. Zhang, R. Q. and L. Zhu, "Synthesis and design of wideband dual-band bandpass filters with controllable in-band ripple factor and dual-band isolation," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 5, 1820-1828, May 2013.
doi:10.1109/TMTT.2013.2256145

7. Deng, H. W., Y. J. Zhao, Y. Fu, X. J. Zhou, and Y. Y. Liu, "Compact and high selectivity dual-band microstrip BPF with QWR and SLR," Microwave and Optical Tech. Lett., Vol. 54, No. 12, 2702-2705, Dec. 2012.
doi:10.1002/mop.27211

8. Hsu, K.-W., C.-H. Chien, and W.-H. Tu, "Compact dual-wideband bandpass filter using asymmetrical resonator," Electron. Lett., Vol. 49, No. 2, 123-124, Jan. 2013.
doi:10.1049/el.2012.3633

9. Xu, J., Y.-X. Ji, C. Miao, and W. Wu, "Compact single-/dual-wideband BPF using stubs loaded SIR (SsLSIR)," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 7, 338-340, Jul. 2013.
doi:10.1109/LMWC.2013.2263220

10. Matthaei, G. L., "Interdigital band-pass filters," IEEE Trans. Microw. Theory Tech., Vol. 10, No. 6, 479-461, Feb. 1962.
doi:10.1109/TMTT.1962.1125556

11. Deng, H. W., Y. J. Zhao, Y. Fu, J. Ding, and X. J. Zhao, "Compact and high isolation microstrip diplexer for broadband and WLAN application," Progress in Electromagnetics Research, Vol. 133, 133-555, 2013.