Vol. 50
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-12-19
Design of a Compact Wilkinson Power Divider with High Order Harmonics Suppression
By
Progress In Electromagnetics Research Letters, Vol. 50, 111-116, 2014
Abstract
A new method for designing compact Wilkinson power dividers with three order harmonics suppression is presented. The quarter-wavelength transmission line in the traditional Wilkinson power divider is replaced by two pairs of parallel coupled lines with one end connected in series with an open stub. With this structure, the quarter-wavelength line will be shorter and three attenuation poles can be added in the stopband. As a result, this newly proposed structure carries the functions of impedance matching at operating frequency and three orders harmonics suppression. In this study, an example of power divider operating at 1 GHz is designed and fabricated. The measured results show good performance at the operating frequency. In addition, the second, third and fourth harmonics suppressions are 43 dB, 49 dB and 37 dB, respectively, which validates the feasibility of the proposed design.
Citation
Xin Xu, and Xiaohong Tang, "Design of a Compact Wilkinson Power Divider with High Order Harmonics Suppression," Progress In Electromagnetics Research Letters, Vol. 50, 111-116, 2014.
doi:10.2528/PIERL14110501
References

1. Wilkinson, E. J., "An N-way hybrid power divider," IRE Transactions on Microwave Theory and Techniques, Vol. 8, No. 1, 116-118, 1960.
doi:10.1109/TMTT.1960.1124668

2. Lee, D. H., Y. B. Park, and Y. Yun, "Highly miniaturised Wilkinson power divider employing π-type multiple coupled microstrip line structure," Electronics Letters, Vol. 42, No. 3, 763-765, 2006.
doi:10.1049/el:20060895

3. Lin, C. M., H. H. Su, J. C. Chiu, and Y. H. Wang, "Wilkinson powerdivider using microstrip EBG cells for the suppression of harmonics," IEEE Microwave Wireless Components Letters, Vol. 17, No. 10, 700-702, 2007.
doi:10.1109/LMWC.2007.905595

4. Zhang, F. and C. F. Li, "Power divider with microstrip electromagnetic bandgap element for miniaturisation and harmonic rejection," Electronics Letters, Vol. 44, No. 6, 422-423, 2008.
doi:10.1049/el:20083693

5. Woo, D. J. and T. K. Lee, "Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 6, 2139-2144, 2005.
doi:10.1109/TMTT.2005.848772

6. Gil, M., J. Bonache, I. Gil, J. Garc´ıa-Garcıa, and F. Martın, "Miniaturisation of planar microwave circuits by using resonant-type left-handed transmission lines," IET Microwave, Antennas & Propagation, Vol. 1, No. 1, 73-79, 2007.
doi:10.1049/iet-map:20050302

7. Yi, K.-H. and B. Kang, "Modified Wilkinson power divider for nth harmonic suppression," Microwave and Wireless Components Letters, Vol. 13, No. 5, 178-180, 2003.
doi:10.1109/LMWC.2003.811670

8. Woo, D.-J. and T.-K. Lee, "Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 6, 2139-2144, 2005.
doi:10.1109/TMTT.2005.848772

9. Zhang, J., et al. "Compact and harmonic suppression Wilkinson power divider with short circuit anti-coupled line," Microwave and Wireless Components Letters, Vol. 17, No. 9, 661-663, 2007.
doi:10.1109/LMWC.2007.903453

10. Lin, , C.-M., et al. "Wilkinson power divider using microstrip EBG cells for the suppression of harmonics," Microwave and Wireless Components Letters, Vol. 17, No. 10, 700-702, 2007.
doi:10.1109/LMWC.2007.905595

11. Liu, , H. W., et al. "Harmonics suppression of Wilkinson power divider using spurlines with adjustable rejection bands," Microwave and Optical Technology Letters, Vol. 50, No. 3, 601-604, 2008.
doi:10.1002/mop.23172

12. Wang, J., et al. "Miniaturized microstrip Wilkinson power divider with harmonic suppression," Microwave and Wireless Components Letters, Vol. 19, No. 7, 440-442, 2009.
doi:10.1109/LMWC.2009.2022124

13. Peng, Y., L. Zhang, Y. Leng, and J. Guan, "A modified microstrip Wilkinson power divider with high order harmonics suppression," Progress In Electromagnetics Research C, Vol. 36, 159-168, 2013.
doi:10.2528/PIERC12111605

14. Zysman, G. I. and A. K. Johnson, "Coupled-transmission-line networks in an inhomogeneous medium," IEEE Transaction on Microwave Theory and Techniques, Vol. 17, No. 10, 753-759, 1969.
doi:10.1109/TMTT.1969.1127055

15. Hong, J. S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, 2004.