Vol. 150
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-12-21
Efficient Evaluation of Near-Field Time-Domain Physical-Optics Integral Using Locally Expanded Green Function Approximation
By
Progress In Electromagnetics Research, Vol. 150, 41-48, 2015
Abstract
A time-efficient method is proposed to calculate the near-field time-domain physical-optics (TD-PO) integral to analyze the transient electromagnetic fields scattered from three-dimensional perfectly conducting objects under the illumination of a pulsed plane wave. It is shown that the TDPO integral can be reduced to a close-form expression by introducing locally expanded Green-function approximations used in conjunction with the surface partitioning. As a result, the near-field TD-PO response to a general pulsed plane wave excitation is derived by a convolution of the excitation waveform with the TD-PO impulse response, which can be performed in a closed form. To satisfy the causality, i.e., the transient field cannot travel away from the sources faster than the speed of light, the high-order derivative of a modulated-Gaussian wave is specified as the excitation waveform. The efficiency and accuracy of the proposed near-field formulas are validated through numerical examples.
Citation
Xiao Zhou, and Tie-Jun Cui, "Efficient Evaluation of Near-Field Time-Domain Physical-Optics Integral Using Locally Expanded Green Function Approximation," Progress In Electromagnetics Research, Vol. 150, 41-48, 2015.
doi:10.2528/PIER14102507
References

1. Sun, E.-Y. and W. Rusch, "Time-domain physical-optics," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 1, 9-15, 1994.
doi:10.1109/8.272295

2. Sun, E.-Y. and W. V. T. Rusch, "Time-domain physical-optics analysis of large reflector antennas," Antennas and Propagation Society International Symposium, AP-S, Merging Technologies for the 90’s, Digest, Vol. 1, 26-29, 1990.
doi:10.1109/APS.1990.115041

3. Guan, Y., S.-X. Gong, S. Zhang, B. Lu, and T. Hong, "A novel time-domain physical optics for computation of electromagnetic scattering of homogeneous dielectric objects," Progress In Electromagnetics Research M, Vol. 14, 123-134, 2010.
doi:10.2528/PIERM10081605

4. Le Bolzer, F., R. Gillard, J. Citerne, V. Fouad Hanna, and M. Wong, "A time-domain hybrid method combining the finite-difference and physical-optics methods," Microwave and Optical Technology Letters, Vol. 21, No. 2, 82-88, 1999.
doi:10.1002/(SICI)1098-2760(19990420)21:2<82::AID-MOP2>3.0.CO;2-W

5. Qin, S.-T., S.-X. Gong, R. Wang, and L.-X. Guo, "A TDIE/TDPO hybrid method for the analysis of TM transient scattering from two-dimensional combinative conducting cylinders," Progress In Electromagnetics Research, Vol. 102, 181-195, 2010.
doi:10.2528/PIER09122405

6. Zhou, X. and T. J. Cui, "A closed-form representation of time-domain far fields based on physical optics," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 965-968, 2012.
doi:10.1109/LAWP.2012.2213331

7. Gordon, W. B., "Far-field approximations to the Kirchoff-Helmholtz representations of scattered fields," IEEE Transactions on Antennas and Propagation, Vol. 23, No. 4, 590-592, 1975.
doi:10.1109/TAP.1975.1141105

8. Bolukbas, D. and A. A. Ergin, "A radon transform interpretation of the physical optics integral," Microwave and Optical Technology Letters, Vol. 44, 284-288, 2005.
doi:10.1002/mop.20612

9. Legault, S., "Refining physical optics for near-field computations," Electronics Letters, Vol. 40, No. 1, 71-72, 2004.
doi:10.1049/el:20040001

10. Hansen, T. and A. D. Yaghjian, Plane-wave Theory of Time-domain Fields, IEEE Press, 1999.
doi:10.1109/9780470545522

11. Martinez-Burdalo, M., L. Nonidez, A. Martin, and R. Villar, "Near-field time-domain physical-optics and FDTD method for safety assessment near a base-station antenna," Microwave and Optical Technology Letters, Vol. 39, No. 5, 393-395, 2003.
doi:10.1002/mop.11227