Vol. 51
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-01-04
Compact Balanced UWB BPF Based on HMSIW and d -DGS
By
Progress In Electromagnetics Research Letters, Vol. 51, 33-37, 2015
Abstract
A compact balanced UWB bandpass filter (BPF) is proposed in this paper, which is based on the half-mode substrate integrated waveguide (HMSIW) and the differential defected ground structure (D-DGS). Using the HMSIW, the filter can achieve compact size, wide passband and good compatibility. Two D-DGS cells are employed to provide good suppression for the common-mode (CM) noise, while they have small effect on the performance of differential-mode (DM) signals. To validate the design theory, a microstrip balanced UWB BPF is designed, fabricated and measured to meet compact size, low insertion loss, good return loss as well as proper bandwidth. The predicted results are compared with measured data and show reasonable agreement.
Citation
Jiao Li, Chen Ding, Feng Wei, and Xiao-Wei Shi, "Compact Balanced UWB BPF Based on HMSIW and d -DGS," Progress In Electromagnetics Research Letters, Vol. 51, 33-37, 2015.
doi:10.2528/PIERL14101602
References

1. Viallon, C., G. Meneghin, and T. Parra, "NMOS device optimization for the design of a W-band double-balanced resistive mixer," IEEE Microwave and Wireless Components Letters, Vol. 24, 637-639, 2014.
doi:10.1109/LMWC.2014.2332100

2. Wei, H.-C., C.-L. Hsiao, and R.-M. Weng, "A broadband low power high isolation double-balanced subharmonic mixer for 4G applications," Progress In Electromagnetics Research, Vol. 138, 143-155, 2013.
doi:10.2528/PIER13012509

3. Tang, X. and K. Mouthaan, "Design of large bandwidth phase shifters using common mode all-pass networks," IEEE Microwave and Wireless Components Letters, Vol. 22, 55-57, 2012.
doi:10.1109/LMWC.2011.2182185

4. Guo, J., Z. Xu, C. Qian, and W. Dou, "Design of a microstrip balanced mixer for satellite communication," Progress In Electromagnetics Research, Vol. 115, 289-301, 2011.

5. Chiu, L., Q. Xue, and C. H. Chan, "Dual-fed patch antenna with distorted patch mode for balanced circuits," IET Microwaves, Antennas & Propagation, Vol. 4, 809-816, 2010.
doi:10.1049/iet-map.2008.0275

6. Niu, J. X. and X. L. Zhou, "Analysis of balanced composite right/left handed structure based on different dimensions of complementary split ring resonators," Progress In Electromagnetics Research, Vol. 74, 341-351, 2007.
doi:10.2528/PIER07051802

7. Liao, C. F., Y. J. Chan, and Y. C. Chiang, "2.4GHz monolithic microwave mixer with lumped balanced circuits," Microwave and Optical Technology Letters, Vol. 17, 357-359, 1998.
doi:10.1002/(SICI)1098-2760(19980420)17:6<357::AID-MOP6>3.0.CO;2-G

8. Gunton, D. J., "Microwave balanced-mixer circuits using combline directional couplers," Electronics Letters, Vol. 12, 204-205, 1976.
doi:10.1049/el:19760157

9. Li, L., J. Bao, J.-J. Du, and Y.-M. Wang, "Differential wideband bandpass filters with enhanced common-mode suppression using internal coupling technique," IEEE Microwave and Wireless Components Letters, Vol. 24, 300-302, 2014.
doi:10.1109/LMWC.2014.2306896

10. Wu, X.-H., Q.-X. Chu, and L.-L. Qiu, "Differential wideband bandpass filter with high-selectivity and common-mode suppression," IEEE Microwave and Wireless Components Letters, Vol. 23, 644-646, 2013.
doi:10.1109/LMWC.2013.2284787

11. Wang, X.-H., Q. Xue, and W.-W. Choi, "A novel ultra-wideband differential filter based on double-sided parallel-strip line," IEEE Microwave and Wireless Components Letters, Vol. 20, 471-473, 2010.
doi:10.1109/LMWC.2010.2050869

12. Zhu, H. T., W. J. Feng, W. Q. Che, and Q. Xue, "Ultra-wideband differential bandpass filter based on transversal signal-interference concept," Electronics Letters, Vol. 47, 1033-1035, 2011.
doi:10.1049/el.2011.2088

13. Wang, X.-H., H. Zhang, and B.-Z. Wang, "A novel ultra-wideband differential filter based on microstrip line structures," IEEE Microwave and Wireless Components Letters, Vol. 23, 128-130, 2013.
doi:10.1109/LMWC.2013.2243719

14. Wu, S. M., C. T. Kuo, and C. H. Chen, "Very compact full differential bandpass filter with transformer integrated using integrated passive device technology," Progress In Electromagnetics Research, Vol. 113, 251-267, 2011.

15. Wu, C.-H., C.-H. Wang, and C. H. Chen, "Novel balanced coupled-line bandpass filters with common-mode noise suppression," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 287-295, 2007.
doi:10.1109/TMTT.2006.889147

16. Wu, S.-M., R.-F. Hsu, and P. H. Yu, "Signal integrity and electromagnetic broadband packaging model extraction of full differential bandpass filter on IPD with BGA packaging," Progress In Electromagnetics Research, Vol. 141, 201-217, 2013.
doi:10.2528/PIER13040214

17. Lai, Q., C. Fumeaux, W. Hong, and R. Vahldieck, "Characterization of the propagation properties of the half-mode substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 1996-2004, 2009.
doi:10.1109/TMTT.2009.2025429

18. Matsumoto, K., Y. Toyota, K. Iokibe, and R. Koga, "Development of equivalent circuit model with transmission line model for designing filters formed on printed circuit boards," 2010 IEEE International Symposium on Electromagnetic Compatibility (EMC), 289-294, 2010.
doi:10.1109/ISEMC.2010.5711287