Vol. 51
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-12-30
Focusing Properties of Hypergeometric Gaussian Beam through a High Numerical-Aperture Objective
By
Progress In Electromagnetics Research Letters, Vol. 51, 21-26, 2015
Abstract
The focusing properties of radially polarized hypergeometric Gaussian beam are studied using the Richards-Wolf vectorial diffraction model. Such a polarized beam is decomposed into radial and longitudinal polarization. With a proper combination of the beam order, beam size and imaginary parameter variables, the adjustably confined flat-topped focus and focal hole can be obtained in the focal region. Moreover, we got originality characteristic for the axial intensity distribution of two shaped symmetric light spots. The tight focusing of a hypergeometric Gaussian beam may find applications in data storage, laser drilling, optical trapping, etc.
Citation
Ji Peng, Zhengye Shan, Yangsheng Yuan, Zhifeng Cui, Wei Huang, and Jun Qu, "Focusing Properties of Hypergeometric Gaussian Beam through a High Numerical-Aperture Objective," Progress In Electromagnetics Research Letters, Vol. 51, 21-26, 2015.
doi:10.2528/PIERL14101304
References

1. Neves, A. R., A. Fontes, L. Y. De Pozzo, et al. "Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric," Optics Express, Vol. 14, No. 26, 13101-13106, 2006.
doi:10.1364/OE.14.013101

2. Li, X., Y. Cao, and M. Gu, "Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam," Opt. Lett., Vol. 36, 2510-2512, 2011.
doi:10.1364/OL.36.002510

3. Jeffries, G. D. M., J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, "Using polarization-shaped optical vortex traps for single-cell nanosurgery," Nano. Lett., Vol. 7, 415-420, 2007.
doi:10.1021/nl0626784

4. Zhao, Y., J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, "Spin-to-orbital angular momentum conversion in a strongly focused optical beam," Phys. Rev. Lett., Vol. 99, 073901, 2007.
doi:10.1103/PhysRevLett.99.073901

5. Davis, J. A., D. E. McNamara, D. M. Cottrell, and J. Campos, "Image processing with the radial Hilbert transform: Theory and experiments," Opt. Lett., Vol. 25, 99-101, 2000.
doi:10.1364/OL.25.000099

6. Verhagen, E., L. Kuipers, and A. Polman, "Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence," Optics Express, Vol. 17, No. 17, 14586-14598, 2009.
doi:10.1364/OE.17.014586

7. Valagiannopulos, C. A. and N. L. Tsitsas, "Field enhancement in a grounded dielectric slab by using a single superstrate layer," Advances in OptoElectronics, Vol. 10, 1-9, 2012.
doi:10.1155/2012/439147

8. Tsitsas, N. L. and C. A. Valagiannopoulos, "On centrating the electromagnetic power in a grounded dielectric slab excited by an external gaussian beam," International Conference on Mathematical Methods in Electromagnetic Theory, 304-307, 2012.

9. Valagiannopulos, C. A., "Electromagnetic absorption of gaussian beams by a grounded layered structure," Radioengineering, Vol. 22, No. 1, 333-340, 2013.

10. Wolf, E., "Electromagnetic diffraction in optical systems. I. An integral representation of the image field," Proc. R. Soc. A, Vol. 253, 349-357, 1959.
doi:10.1098/rspa.1959.0199

11. Richards, B. and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system," Proc. R. Soc. A, Vol. 253, 358-379, 1959.
doi:10.1098/rspa.1959.0200

12. Dorn, R., S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett., Vol. 91, 233901, 2003.
doi:10.1103/PhysRevLett.91.233901

13. Yang, L., X. Xie, S. Wang, and J. Zhou, "Minimized spot of annular radially polarized focusing beam," Opt. Lett., Vol. 38, 1331-1333, 2013.
doi:10.1364/OL.38.001331

14. Kitamura, K., K. Sakai, and S. Noda, "Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam," Optics Express, Vol. 18, 4518-4525, 2010.
doi:10.1364/OE.18.004518

15. Kotlyar, V. V., R. V. Skidanov, S. N. Khonina, and V. A. Soifer, "Hypergeometric modes," Opt. Lett., Vol. 32, 742-744, 2007.
doi:10.1364/OL.32.000742

16. Karimi, E., G. Zito, B. Piccirillo, L. Marrucci, and E. Santamato, "Hypergeometric-Gaussian modes," Opt. Lett., Vol. 32, 3053-3055, 2007.
doi:10.1364/OL.32.003053

17. Kotlyar, V. V., A. A. Kovalev, R. V. Skidanov, S. N. Khonina, and J. Turunen, "Generating hypergeometric laser beams with a diffractive optical element," Appl. Opt., Vol. 47, 6124-6133, 2008.
doi:10.1364/AO.47.006124

18. Kotlyar, V. V. and A. A. Kovalev, "Family of Hypergeometric laser beams," J. Opt. Soc. Am. A, Vol. 25, 262-270, 2008.
doi:10.1364/JOSAA.25.000262

19. Eyyuboglu, H. T. and Y. Cai, "Hypergeometric Gaussian beam and its propagation in turbulence," Opt. Commun., Vol. 285, 4194-4190, 2012.
doi:10.1016/j.optcom.2012.07.020

20. Youngworth, K. and T. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Optics Express, Vol. 7, 77-87, 2000.
doi:10.1364/OE.7.000077

21. Zhan, Q. and J. Leger, "Focus shaping using cylindrical vector beams," Optics Express, Vol. 10, 324-331, 2002.
doi:10.1364/OE.10.000324

22. Lin, J., Y. Ma, P. Jin, G. Davies, and J. Tan, "Longitudinal polarized focusing of radially polarized sinh-Gaussian beam," Optics Express, Vol. 21, 13193-13198, 2013.
doi:10.1364/OE.21.013193