Vol. 50
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-11-12
Analysis of mm -Wave Bands Quasi-Optical Unstable Bessel-Gauss Resonator by Idgf Algorithm
By
Progress In Electromagnetics Research Letters, Vol. 50, 19-27, 2014
Abstract
An analysis of quasi-optical unstable Bessel-Gauss resonator (QOUBGR) at millimeter wavelengths is presented in this paper. The QOUBGR, formed by a conical mirror and a convex mirror, is designed on the basic of quasi-optical theory and techniques. For the purpose of precisely analyzing the designed QOUBGR, a new algorithm known as iterative dyadic Green's functions (IDGF) is proposed, which originates from famous Fox-Li algorithm. The IDGF algorithm can calculate not only two-dimension (2-D) but also three-dimension (3-D) resonating modes in the cavity. Simulation results demonstrate that the designed QOUBGR can steadily support both zero-order and high-order resonant modes that are approximations to Bessel-Gauss beams. These beams will find their promising applications in the MM- and/or quasi-optical imaging and measurement systems.
Citation
Yan-Zhong Yu, Hongfu Meng, and Wen-Bin Dou, "Analysis of mm -Wave Bands Quasi-Optical Unstable Bessel-Gauss Resonator by Idgf Algorithm," Progress In Electromagnetics Research Letters, Vol. 50, 19-27, 2014.
doi:10.2528/PIERL14100304
References

1. Durnin, J., "Exact solutions for nondiffracting beams. I. The scalar theory," J. Opt. Soc. Am. A, Vol. 4, No. 4, 651-654, 1987.
doi:10.1364/JOSAA.4.000651

2. Durnin, J., J. J. Miceli, Jr., and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett., Vol. 58, No. 15, 1499-1501, 1987.
doi:10.1103/PhysRevLett.58.1499

3. Gori, F., G. Guattari, and C. Padovani, "Bessel-Gauss beams," Opt. Commun., Vol. 64, No. 6, 491-495, 1987.
doi:10.1016/0030-4018(87)90276-8

4. Mahon, R. J., W. Lanigan, J. A. Murphy, et al. "Novel techniques for millimeter wave imaging systems operating at 100 GHz," Proc. SPIE Int. Soc. Opt. Eng., Vol. 5789, 93-100, 2005.

5. Lu, J., T. K. Song, R. R. Kinnick, et al. "In vitro and in vivo real-time imaging with ultrasonic limited diffraction beams," IEEE Trans. Med. Imag., Vol. 12, No. 12, 819-829, 1993.
doi:10.1109/42.251134

6. Hegner, M., "Optics: The light fantastic," Nature, Vol. 419, 125-127, 2002.
doi:10.1038/419125a

7. Garces-Chavez, V., D. Mcgloin, and E. H. Melvill, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature, Vol. 419, 145-147, 2002.
doi:10.1038/nature01007

8. Hughes, S. and J. M. Burzler, "Theory of Z-scan measurements using Gaussian-Bessel beams," Physical Review A, Vol. 56, No. 2, R1103-R1106, 1997.
doi:10.1103/PhysRevA.56.R1103

9. Cox, A. J. and D. C. Dibble, "Nondiffracting beam from a spatially filtered Fabry-Perot resonator," J. Opt. Soc. Am. A, Vol. 9, No. 2, 282-286, 1992.
doi:10.1364/JOSAA.9.000282

10. Monk, S., J. Arlt, D. A. Robertson, et al. "The generation of Bessel beams at millimetre-wave frequencies by use of an axicon," Opt. Commun., Vol. 170, 213-215, 1999.
doi:10.1016/S0030-4018(99)00463-0

11. Meltaus, J., J. Salo, E. Noponen, et al. "Millimeter-wave beam shaping using holograms," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 4, 1274-1279, 2003.
doi:10.1109/TMTT.2003.809679

12. Muys, P. and E. Vandamme, "Direct generation of Bessel beams," Appl. Opt., Vol. 41, 6375-6379, 2002.
doi:10.1364/AO.41.006375

13. Hernandez-Aranda, R. I., S. Chavez-Cerda, and J. C. Gutierrez-Vega, "Theory of the unstable Bessel resonator," J. Opt. Soc. Am. A, Vol. 22, 1909-1917, 2005.
doi:10.1364/JOSAA.22.001909

14. Wu, F. T., Y. B. Chen, and D. D. Guo, "Nanosecond pulsed Bessel-Gauss beam generated directly from a Nd: YAG axicon-based resonator," Appl. Opt., Vol. 46, No. 22, 4943-4947, 2007.
doi:10.1364/AO.46.004943

15. Khilo, A. N., E. G. Katranji, and A. A. Ryzhevich, "Axicon-based Bessel resonator: Analytical description and experiment," J. Opt. Soc. Am. A, Vol. 18, No. 8, 1986-1992, 2001.
doi:10.1364/JOSAA.18.001986

16. Rogel-Salazar, J., G. H. C. New, and S. Chávez-Cerda, "Bessel-Gauss beam optical resonator," Opt. Commun., Vol. 190, 117-122, 2001.
doi:10.1016/S0030-4018(01)01075-6

17. Tsangaris, C. L., G. H. C. New, and J. Rogel-Salazar, "Unstable Bessel beam resonator," Opt. Commun., Vol. 223, 233-238, 2003.
doi:10.1016/S0030-4018(03)01681-X

18. Ling, D. X. and J. C. Li, "Analysis of eigenfields in the axicon-based Bessel-Gauss resonator by the transfer-matrix method," J. Opt. Soc. Am. A, Vol. 23, No. 4, 912-918, 2006.
doi:10.1364/JOSAA.23.000912

19. Yu, Y.-Z. and W.-B. Dou, "Quasi-optical Bessel resonator," Progress In Electromagnetics Research, Vol. 93, 205-219, 2009.
doi:10.2528/PIER09042902

20. Yu, Y.-Z. and W.-B. Dou, "Investigation of quasi-optical Bessel-Gauss resonator at mm- and submm-wavelengths," Progress In Electromagnetics Research, Vol. 138, 453-466, 2013.
doi:10.2528/PIER13022007

21. Meng, H. F., B. Xiang, J. L. Zhang, W. B. Dou, and Y. Z. Yu, "The generation of bessel beam and its application in millimeter wave imaging," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 35, No. 2, 208-217, 2014.
doi:10.1007/s10762-013-0037-9

22. Bagini, V., F. Frezza, M. Santarsiero, G. Schettini, and G. Schirripa Spagnolo, "Generalized Bessel-Gauss beams," Journal of Modern Optics, Vol. 43, No. 6, 1155-1166, 1996.

23. Fox, A. G. and T. Li, "Resonant modes in a maser interferometer," Bell Syst. Tech. J., Vol. 40, 453-488, 1961.
doi:10.1002/j.1538-7305.1961.tb01625.x

24. Hsu, W. and R. Barakat, "Stratton-Chu vectorial diffraction of electromagnetic fields by apertures with application to small-Fresnel-number systems," J. Opt. Soc. Am. A, Vol. 11, No. 2, 623-629, 1994.
doi:10.1364/JOSAA.11.000623

25. Eroglu, A. and J. K. Lee, "Simplified formulation of dyadic Green’s functions and their duality relations for general anisotropic media," Progress In Electromagnetics Research, Vol. 77, 391-408, 2007.
doi:10.2528/PIER07082401

26. Gao, G., C. Torres-Verdin, and T. M. Habashy, "Analytical techniques to evaluate the integrals of 3D and 2D spatial dyadic Green’s functions," Progress In Electromagnetics Research, Vol. 52, 47-80, 2005.
doi:10.2528/PIER04070201

27. Li, L.-W., N.-H. Lim, W.-Y. Yin, and J.-A. Kong, "Eigenfunctional expansion of dyadic Green’s functions in gyrotropic media using cylindrical vector wave functions," Progress In Electromagnetics Research, Vol. 43, 101-121, 2003.
doi:10.2528/PIER03020201

28. Hanson, G. W., A. I. Nosich, and E. M. Kartchevski, "Green’s function expansions in dyadic root functions for shielded layered waveguides," Progress In Electromagnetics Research, Vol. 39, 61-91, 2003.
doi:10.2528/PIER02082205

29. Li, L. W., S. B. Yeap, M. S. Leong, T. S. Yeo, and P. S. Kooi, "Dyadic Green’s functions in multilayered stratified gyroelectric chiral media," Progress In Electromagnetics Research, Vol. 35, 53-81, 2002.
doi:10.2528/PIER01042401

30. Tan, E. L. and S. Y. Tan, "On the eigenfunction expansions of the dyadic Green’s functions for bianisotropic media," Progress In Electromagnetics Research, Vol. 20, 227-247, 1998.
doi:10.2528/PIER98022500

31. Gao, Z. H., "Wave pattern property of self-reproductive mode in laser resonator," Guangzi Xuebao/Acta Photonica Sinica, Vol. 29, No. 8, 726-729, 2000.