Vol. 39
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-11-12
A Method of Predicting Composite Magnetic Sources Employing Particle Swarm Optimization
By
Progress In Electromagnetics Research M, Vol. 39, 161-170, 2014
Abstract
In this paper, the problem of predicting the parameters (positions and magnetic moments) of an Equipment Under Test (EUT) composed of a magnetic dipole and quadrupole is studied. Firstly, a multiple magnetic dipole and quadrupole model (MDQM) is developed to simulate the magnetic behavior of the EUT. The parameters of the model are calculated using the values of the near field measurements applying the Particle Swarm Optimization (PSO) algorithm. For the evaluation of the method, extended simulations were conducted, producing theoretical values and distorting them with noise, and then the developed algorithm was used to create the proper MDQM. As an evaluation criterion, the relative difference between the theoretical and the MDQM's magnetic field is considered.
Citation
Sotirios T. Spantideas, Nikolaos C. Kapsalis, Sarantis-Dimitrios J. Kakarakis, and Christos N. Capsalis, "A Method of Predicting Composite Magnetic Sources Employing Particle Swarm Optimization," Progress In Electromagnetics Research M, Vol. 39, 161-170, 2014.
doi:10.2528/PIERM14092902
References

1. Mehlem, K., "Multiple magnetic dipole modeling and field prediction of satellites," IEEE Transactions on Magnetics, Vol. 14, No. 5, 1064-1074, Sep. 1978.
doi:10.1109/TMAG.1978.1059983

2. Nara, T., S. Suzuki, and S. Ando, "A closed-form formula for magnetic dipole localization by measurement of its magnetic field and spatial gradients," IEEE Transactions on Magnetics, Vol. 42, No. 10, 3291-3293, Oct. 2006.
doi:10.1109/TMAG.2006.879151

3. Song, H., J. Chen, D. Zhou, D. Hou, and J. Lin, "An equivalent model of magnetic dipole for the slot coupling of shielding cavity," 8th International Symposium on Antennas, Propagation and EM Theory, ISAPE, 970-973, Nov. 2-5, 2008.

4. Junge, A. and F. Marliani, "Prediction of DC magnetic fields for magnetic cleanliness on spacecraft," 2011 IEEE International Symposium on Electromagnetic Compatibility (EMC), 834-839, Aug. 14-19, 2011.

5. Endo, H., T. Takagi, and Y. Saito, "A new current dipole model satisfying current continuity for inverse magnetic field source problems ," IEEE Transactions on Magnetics, Vol. 41, No. 5, 1748-1751, May 2005.
doi:10.1109/TMAG.2005.846037

6. Weikert, S., K. Mehlem, and A. Wiegand, "Spacecraft magnetic cleanliness prediction and control," Proceedings ESA Workshop on Aerospace EMC, 1-5, May 21-23, 2012.

7. Carrubba, E., A. Junge, F. Marliani, and A. Monorchio, "Particle swarm optimization to solve multiple dipole modelling problems in space applications," Proceedings ESA Workshop on Aerospace EMC, 1-6, May 21-23, 2012.

8. Mehlem, K., A. Wiegand, and S. Weickert, "New developments in magnetostatic cleanliness modeling," Proceedings ESA Workshop on Aerospace EMC, 1-6, May 21-23, 2012.

9. Dumond, O. and R. Berge, "Determination of the magnetic moment with spherical measurements and spherical harmonics modelling," Proceedings ESA Workshop on Aerospace EMC, 1-5, May 21-23, 2012.

10. Mikki, S. M. and Y. M. M. Antar, "Near-field analysis of electromagnetic interactions in antenna arrays through equivalent dipole models," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1381-1389, Mar. 2012.
doi:10.1109/TAP.2011.2180318

11. Ciamak, A. and H. Jurgen, "Real-time ECG emulation: A multiple dipole model for electrocardiography simulation," Studies in Health Technology and Informatics, Vol. 142, 7-9, PMID: 19377101, 2009.

12. Pan, S., J. Kim, S. Kim, J. Park, H. Oh, and J. Fan, "An equivalent three-dipole model for IC radiated emissions based on TEM cell measurements," IEEE International Symposium on Electromagnetic Compatibility (EMC), 652-656, Jul. 25-30, 2010.

13. Li, P., Y. Li, L. Jiang, and J. Hu, "A wide band equivalent source reconstruction method exploiting the Stoer-Bulirsch algorithm with the adaptive frequency sampling," IEEE Trans. Antennas Propagat., Vol. 61, No. 10, 5338-5343, Oct. 2013.
doi:10.1109/TAP.2013.2274032

14. Zhao, H., Y. Zhang, E.-P. Li, A. Buonanno, and M. D’Urso, "Diagnosis of array failure in impulsive noise environment using unsupervised support vector regression method," IEEE Trans. Antennas Propagat., Vol. 61, No. 11, 5508-5516, Nov. 2013.
doi:10.1109/TAP.2013.2275750

15. Kapsalis, N. C., S.-D. J. Kakarakis, and C. N. Capsalis, "Prediction of multiple magnetic dipole model parameters from near field measurements employing stochastic algorithms," Progress In Electromagnetics Research Letters, Vol. 34, 111-122, 2012.
doi:10.2528/PIERL12030905

16. Zhang, Y.-J., S.-X. Gong, X. Wang, and W.-T. Wang, "A hybrid genetic-algorithm space-mapping method for the optimization of broadband aperture-coupled asymmetrical U-shaped slot antennas," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2139-2153, 2010.
doi:10.1163/156939310793699118

17. Wang, J., B. Yang, S. H. Wu, and J. S. Chen, "A novel binary particle swarm optimization with feedback for synthesizing thinned planar arrays," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 1985-1988, 2011.
doi:10.1163/156939311798071965

18. Kennedy, J. and R. Eberhart, "Particle swarm optimization," Proceedings of IEEE International Conference on Neural Networks, Vol. 4, 1942-1948, Nov./Dec. 1995.

19. Elgallad, A., M. El-Hawary, W. Phillips, and A. Sallam, "PSO-based neural network for dynamic bandwidth re-allocation [power system communication]," Large Engineering Systems Conference on Power Engineering, LESCOPE, 98-102, 2002.

20. Knapp, D. G., On Modeling Magnetic Fields on a Sphere with Dipoles and Quadrupoles, Geological Survey Professional Paper 1118, United States Government Printing Office, Washington, 1980.