Vol. 39
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-11-14
Investigation of a Conductivity Logging Tool Based on Single Coil Impedance Measurement Using FDTD Method
By
Progress In Electromagnetics Research M, Vol. 39, 171-180, 2014
Abstract
Eddy current test has been widely used in many fields because of its simplicity and robustness. In this paper, numerical simulations based on the finite-difference time-domain method were carried out to validate if the eddy current coil can effectively be used in the logging while drilling system. The simulation results showed that the impedance of the eddy current coil is a function of conductivity of the surrounding media. The formation conductivity is strongly dependent on the concentration of hydrocarbons, so different formation layers can be distinguished by measuring coil impedance. Different source frequencies were applied, and it was found that this method works well in frequency range from 100 MHz to 1 GHz. The investigation depth was studied in this paper, and a 3-layer formation model was simulated in this paper. The results showed that this novel method could be effectively used in a well logging system.
Citation
Shiwei Sheng, Kang Li, Fanmin Kong, and Bin Wang, "Investigation of a Conductivity Logging Tool Based on Single Coil Impedance Measurement Using FDTD Method," Progress In Electromagnetics Research M, Vol. 39, 171-180, 2014.
doi:10.2528/PIERM14091905
References

1. Sun, X. Y., Z.-P. Nie, A. Li, and X. Luo, "Analysis and correction of borehole effect on the responses of multicomponent induction logging tools," Progress In Electromagnetics Research, Vol. 85, 211-226, 2008.
doi:10.2528/PIER08072206

2. Wait, J. R., "Complex resistivity of the earth," Progress In Electromagnetics Research, Vol. 1, 1-173, 1989.
doi:10.1016/B978-0-444-01490-0.50006-4

3. Hasar, U. C., "Permittivity determination of fresh cement-based materials by an open-ended waveguide probe using amplitude-only measurements," Progress In Electromagnetics Research, Vol. 97, 27-43, 2009.
doi:10.2528/PIER09071409

4. Lee, K. Y., B.-K. Chung, Z. Abbas, K. Y. You, and E. M. Cheng, "Amplitude-only measurements of a dual open ended coaxial sensor system for determination of complex permittivity of materials," Progress In Electromagnetics Research M, Vol. 28, 27-39, 2013.
doi:10.2528/PIERM12082906

5. Wang, B., K. Li, F. Kong, and S. Sheng, "Complex permittivity logging tool excited by transient signal for MWD/LWD," Progress In Electromagnetics Research M, Vol. 32, 95-113, 2013.
doi:10.2528/PIERM13041105

6. Anderson, B. I., Modeling and Inversion Methods for the Interpretation of Resistivity Logging Tool Response, Delft University Press, Delft, 2001.

7. Ellis, D. V. and J. M. Singer, Well Logging for Earth Scientists, Springer, Dordrecht, 2007.
doi:10.1007/978-1-4020-4602-5

8. Lee, H. O., et al. "Numerical modeling of eccentered LWD borehole sensors in dipping and fully anisotropic Earth formations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, 727-735, 2012.
doi:10.1109/TGRS.2011.2162736

9. Tianxia, Z., M. Gerald, H. John, and C. G. Jaideva, "A novel technique to compute impedance of an arbitrarily oriented coil antenna for well logging applications," 2012 IEEE Antennas and Propagation Society International Symposium (APSURSI), Vol. 39, 2829-2838, 2012.

10. Theodoulidis, T. P., T. D. Tsiboukis, and E. E. Kriezis, "Analytical solutions in Eddy current testing of layered metals with continuous conductivity profiles," IEEE Transactions on Magnetics, Vol. 31, 2254-2260, 1995.
doi:10.1109/20.376236

11. Uzal, E., J. C. Moulder, S. Mitra, and J. H. Rose, "Impedance of coils over layered metals with continuity variable conductivity and permeability: Theory and experiment," Journal of Applied Physics, Vol. 74, 2076-2089, 1993.
doi:10.1063/1.354773

12. Uzal, E. and J. H. Rose, "The impedance of eddy current probes above layered metals whose conductivity and permeability vary continuously," IEEE Transactions on Magnetics, Vol. 29, 1869-1873, 1993.
doi:10.1109/20.250771

13. Uzal, E., M. O. Kaya, and I. Zkol, "Impedance of a cylindrical coil over an infinite metallic halfspace with shallow surface features," Journal of Applied Physics, Vol. 86, 2311-2317, 1999.
doi:10.1063/1.371047

14. Theodoulidis, T. P. and J. R. Bowler, "Impedance of an induction coil at the opening of a borehole in a conductor," Journal of Applied Physics, Vol. 103, 024905, 2008.
doi:10.1063/1.2827459

15. Trltzsch, U., F. Wendler, and Kanoun, "Simplified analytical inductance model for a single turn eddy current sensor," Sensors and Actuators A: Physical, Vol. 191, 11-21, 2013.
doi:10.1016/j.sna.2012.11.024

16. Vasic, D., V. Bilas, and D. Ambrus, "Validation of a coil impedance model for simultaneous measurement of electromagnetic properties and inner diameter of a conductive tube," IEEE Transactions on Instrumentation and Measurement, Vol. 55, 337-342, 2006.
doi:10.1109/TIM.2005.861244

17. Vasic, D., V. Bilas, and B. snajder, "Analytical modelling in low-frequency electromagnetic measurements of steel casing properties," NDT & E International, Vol. 40, 103-111, 2007.
doi:10.1016/j.ndteint.2006.10.006

18. Hue, Y. K., F. L. Teixeira, L. E. S. Martin, and M. Bittar, "Modeling of EM logging tools in arbitrary 3-D borehole geometries using PML-FDTD," IEEE Geoscience and Remote Sensing Letters, Vol. 2, 78-81, 2005.
doi:10.1109/LGRS.2004.840637

19. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Boston, 2000.

20. Luebbers, R., L. Chen, T. Uno, and S. Adachi, "FDTD calculation of radiation patterns, impedance, and gain for a monopole antenna on a conducting box," IEEE Transactions on Antennas and Propagation, Vol. 40, 1577-1583, 1992.
doi:10.1109/8.204752

21. TerMan, F. E., Radio Engineers’ Handbook, McGraw-Hill, London, 1950.

22. De Mulder, B., K. Van Renterghem, E. De Backer, P. Suanet, and J. Vandewege, "Java-enabled low cost RF vector network analyzer," The 3rd International IEEE-NEWCAS Conference, 377-380, 2005.