Vol. 39
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-11-03
Kriging-Pareto Front Approach for the Multi-Objective Exploration of Metamaterial Topologies
By
Progress In Electromagnetics Research M, Vol. 39, 141-150, 2014
Abstract
Metamaterials provide the opportunity for designers to create customisable artificial materials by independently tailoring the electric and magnetic response of sub-wavelength geometric structures to electromagnetic energy. Due to the increased complexity of these geometric structures, exacerbated by the increased interest in generating inhomogeneous and anisotropic metamaterials, direct optimisation of these designs using conventional approaches often becomes impractical and limited. In order to alleviate this issue, we propose an alternative optimisation approach which exploits the Kriging methodology in conjunction with an adaptive sampling plan to simultaneously optimise multiple conflicting objectives. Results show the effectiveness of the outlined algorithm in calculating a uniform spread of optimal trade-off designs, balancing the real and imaginary components of the refractive index over a wide range of values.
Citation
Patrick J. Bradley, "Kriging-Pareto Front Approach for the Multi-Objective Exploration of Metamaterial Topologies," Progress In Electromagnetics Research M, Vol. 39, 141-150, 2014.
doi:10.2528/PIERM14091203
References

1. Cui, T. J., D. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications, 1st Edition, Springer Publishing Company, Incorporated, 2009.

2. Fang, F., Y. Cheng, and H. Liao, "Numerical study on a three-dimensional broadband isotropic left-handed metamaterial based on closed rings," Physica Scripta, Vol. 89, No. 2, 025501, 2014.
doi:10.1088/0031-8949/89/02/025501

3. Bradley, P. J., "A multi-fidelity based adaptive sampling optimisation approach for the rapid design of double-negative metamaterials," Progress In Electromagnetics Research B, Vol. 55, 87-114, 2013.
doi:10.2528/PIERB13071003

4. Wagner, T., M. Emmerich, A. Deutz, and W. Ponweiser, "On expected-improvement criteria for model-based multi-objective optimization," Parallel Problem Solving from Nature, Vol. 6238, 718-727, Springer, Berlin, Heidelberg, 2010.

5. Wilson, B., D. Cappelleri, T. W. Simpson, and M. Frecker, "Efficient pareto frontier exploration using surrogate approximations," Optimization and Engineering, Vol. 2, No. 1, 31-50, 2001.
doi:10.1023/A:1011818803494

6. Jones, D. R., "A taxonomy of global optimization methods based on response surfaces," Journal of Global Optimization, Vol. 21, No. 4, 345-383, 2001.
doi:10.1023/A:1012771025575

7. Forrester, A., A. Sobester, and A. Keane, Engineering Design via Surrogate Modelling: A Practical Guide, Wiley, 2008.
doi:10.1002/9780470770801

8. Mohan, M., K. Deb, and S. Mishra, "Evaluating the Edomination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions," Evolutionary Computation, Vol. 13, No. 4, 501-525, 2005.
doi:10.1162/106365605774666895

9. Martinez-Iranzo, M., J. M. Herrero, J. Sanchis, X. Blasco, and S. Garcia-Nieto, "Applied Pareto multi-objective optimization by stochastic solvers," Engineering Applications of Artificial Intelligence, Vol. 22, No. 3, 455-465, 2009.
doi:10.1016/j.engappai.2008.10.018

10. Deschrijver, D., K. Crombecq, H. M. Nguyen, and T. Dhaene, "Adaptive sampling algorithm for macromodeling of parameterized S-parameter responses," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 1, 39-45, Jan. 2011.
doi:10.1109/TMTT.2010.2090407

11. Toal, D. J. J., A. I. J. Forrester, N. W. Bressloff, A. J. Keane, and C. Holden, "An adjoint for likelihood maximization," Proceedings of the R, Vol. 465, No. 2111, 3267-3287, Nov. 2009.
doi:10.1098/rspa.2009.0096

12. Jones, D. R., M. Schonlau, and W. J. Welch, "Efficient global optimization of expensive black-box functions," Journal of Global Optimization, Vol. 13, No. 4, 455-492, Dec. 1998.
doi:10.1023/A:1008306431147

13. Keane, A., "Statistical improvement criteria for use in multiobjective design optimization," AIAA Journal, Vol. 44, No. 4, 879-891, 2006.
doi:10.2514/1.16875

14. Morris, M. D. and T. J. Mitchell, "Exploratory designs for computational experiments," Journal of Statistical Planning and Inference, Vol. 43, No. 3, 381-402, 1995.
doi:10.1016/0378-3758(94)00035-T

15. Smith, D. R., D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, Mar. 2005.
doi:10.1103/PhysRevE.71.036617

16. Barroso, J. J. and U. C. Hasar, "Constitutive parameters of a metamaterial slab retrieved by the phase unwrapping method," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 33, No. 2, 237-244, 2012.
doi:10.1007/s10762-011-9869-3

17. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by timedomain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

18. Yu, S., Z. Wu, H. Wang, and Z. Chen, "A hybrid particle swarm optimization algorithm based on space transformation search and a modified velocity model," High Performance Computing and Applications, Vol. 5938, 522-527, 2010.
doi:10.1007/978-3-642-11842-5_73

19. Mansoornejad, B., N. Mostoufi, and F. Jalali-Farahani, "A hybrid GA-SQP optimization technique for determination of kinetic parameters of hydrogenation reactions," Computers & Chemical Engineering, Vol. 32, No. 7, 1447-1455, 2008.
doi:10.1016/j.compchemeng.2007.06.018

20. Zaoui, W. S., K. Chen, W. Vogel, and M. Berroth, "Low loss broadband polarization independent fishnet negative index metamaterial at 40GHz," Photonics and Nanostructures — Fundamentals and Applications, Vol. 10, No. 3, 245-250, 2012.
doi:10.1016/j.photonics.2011.02.003