Vol. 40
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-12-17
An Improved Predesign Procedure for Shaped-Beam Reflectarrays
By
Progress In Electromagnetics Research M, Vol. 40, 119-127, 2014
Abstract
This article describes an improved design procedure for shaped-beam reflectarrays, which is advanced mainly in accuracy and concision. Specifically, the excitation has been computed by a new approach named local simulation instead of mathematical modeling, which demonstrates more advantage in precision. The intersection approach has been applied to optimization, and it is improved by introducing a new multi-stage strategy into the synthesis process to avoid local minima. Moreover, the phase-only optimization, calculation of the reflection phase data table and the simulation verification processes are combined as a co-simulation procedure by VBScript (Visual Basic Script). This procedure is very beneficial to design reflectarrays with efficiency. As an example, a reflectarray consists of 621 dual-loop elements is optimized, and a good sectored-cosecant squared beam result is obtained.
Citation
Jian-Feng Yu, Lei Chen, Jing Yang, and Xiao-Wei Shi, "An Improved Predesign Procedure for Shaped-Beam Reflectarrays," Progress In Electromagnetics Research M, Vol. 40, 119-127, 2014.
doi:10.2528/PIERM14090306
References

1. Huang, J., Reflectarray Antenna, Wiley Online Library, 2008.

2. Chaharmir, M. R., et al. "Design of broadband, single layer dual-band large reflectarray using multi open loop elements," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 2875-2883, 2010.
doi:10.1109/TAP.2010.2052568

3. Chulmin, H., et al. "A high efficiency offset-fed X/Ka-dual-band reflectarray using thin membranes," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 9, 2792-2798, 2005, 10.1109/TAP.2005.854531*10.1109/TAP.2005.854531.
doi:10.1109/TAP.2005.854531

4. Arrebola, M., et al. "Multifed printed reflectarray with three simultaneous shaped beams for LMDS central station antenna," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1518-1527, 2008.
doi:10.1109/TAP.2008.923360

5. Encinar, J. A., et al. "A transmit-receive reflectarray antenna for direct broadcast satellite applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 9, 3255-3264, 2011.
doi:10.1109/TAP.2011.2161449

6. Nayeri, P., et al. "Design and experiment of a single-feed quad-beam reflectarray antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1166-1171, 2012.
doi:10.1109/TAP.2011.2173126

7. Bucci, O. M., et al. "Intersection approach to array pattern synthesis," IEE Proceedings H — Microwaves, Antennas and Propagation, Vol. 137, No. 6, 349-357, 1990.
doi:10.1049/ip-h-2.1990.0064

8. Nayeri, P., et al. "Design of single-feed reflectarray antennas with asymmetric multiple beams using the particle swarm optimization method," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 9, 4598-4605, 2013, 10.1109/TAP.2013.2268243*10.1109/TAP.2013.2268243.
doi:10.1109/TAP.2013.2268243

9. Zornoza, J. A. and J. A. Encinar, "Efficient phase-only synthesis of contoured-beam patterns for very large reflectarrays," Int. J. RF and Microwave Computer-Aided Engineering, Vol. 14, No. 5, 415-423, 2004.
doi:10.1002/mmce.20028

10. Encinar, J. A. and J. A. Zornoza, "Three-layer printed reflectarrays for contoured beam space applications," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, 1138-1148, 2004.
doi:10.1109/TAP.2004.827506

11. Leberer, R. and W. Menzel, "A dual planar reflectarray with synthesized phase and amplitude distribution," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3534-3539, 2005.
doi:10.1109/TAP.2005.858813

12. Vescovo, R., "Reconfigurability and beam scanning with phase-only control for antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1555-1565, 2008.
doi:10.1109/TAP.2008.923297

13. Changhua, W. and J. A. Encinar, "Efficient computation of generalized scattering matrix for analyzing multilayered periodic structure," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 11, 1233-1242, 1995, 10.1109/TAP.1995.481174*10.1109/TAP.1995.481174.

14. Carrasco, E., et al. "Design, manufacture and test of a low-cost shaped-beam reflectarray using a single layer of varying-sized printed dipoles," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 3077-3085, 2013.
doi:10.1109/TAP.2013.2254431

15. Carrasco, E., et al. "Demonstration of a shaped beam reflectarray using aperture-coupled delay lines for LMDS central station antenna," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3103-3111, 2008.
doi:10.1109/TAP.2008.929452

16. Arrebola, M., et al. "Multifed printed reflectarray with three simultaneous shaped beams for LMDS central station antenna," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1518-1527, 2008.
doi:10.1109/TAP.2008.923360