Vol. 50
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-10-11
Simulation of High-Altitude Electromagnetic Pulse (HEMP) Above Sea Surface
By
Progress In Electromagnetics Research M, Vol. 50, 195-204, 2016
Abstract
High-altitude electromagnetic pulse (HEMP) radiated from both primary and secondary currents, which are induced by a nuclear explosion, is computed by using the Jefimenko's equation. The effects of geomagnetic field is considered in computing the primary current, and the rough sea surface is considered in computing the reflected electric field in the frequency domain. The waveforms of HEMP near sea surface and a few km above it are simulated. The impulse and pulse characteristics are discussed, as well as the variation of peak field magnitude when the observation point is moved away from beneath the burst point.
Citation
Hong-Cheng Wei, and Jean-Fu Kiang, "Simulation of High-Altitude Electromagnetic Pulse (HEMP) Above Sea Surface," Progress In Electromagnetics Research M, Vol. 50, 195-204, 2016.
doi:10.2528/PIERM14081902
References

1. Prather, W. D., D. V. Giri, R. L. Gardner, F. M. Tesche, R L. Hutchins, and J. C. Giles, "Early developments in sensors and simulators at the Air Force Weapons Laboratory," IEEE Trans. Electromagn. Compat., Vol. 55, No. 3, 431-439, June 2013.
doi:10.1109/TEMC.2013.2247767

2. Sabath, F. and S. Potthast, "Tolerance values and the confidence level for high-altitude electromagnetic pulse (HEMP) field tests," IEEE Trans. Electromagn. Compat., Vol. 55, No. 3, 518-525, June 2013.
doi:10.1109/TEMC.2012.2237032

3. Karzas, W. J. and R. Latter, "Detection of the electromagnetic radiation from nuclear explosions in space," Phys. Rev., Vol. 137, No. 5B, 1369-1378, 1965.
doi:10.1103/PhysRev.137.B1369

4. Longmire, C. L., "On the electromagnetic pulse produced by nuclear explosions," IEEE Trans. Electromagn. Compat., Vol. 20, No. 1, 3-12, Feb. 1978.
doi:10.1109/TEMC.1978.303688

5. Jump, M. E. and W. C. Emberson, "Ship EMP survivability trials-reply," Naval Eng. J., Vol. 103, No. 4, 119-120, July 1991.

6. Department of Defense Standard Practice "Shipboard bonding, grounding, and other techniques for electromagnetic compatibility, electromagnetic pulse (EMP) mitigation, and safety," MIL-STD-1310H (NAVY), September 2009.

7. Graham, W. R., J. S. Foster, E. Gjelde, R. J. Hermann, H. M. Kluepfel, R. L. Lawson, G. K. Soper, L. L. Wood, and J. B. Woodart, "Report of the commission to assess the threat to the US from an electromagnetic pulse (EMP) attack," US Congress Commission, 2008.

8. Prather, W. D., J. Cafferky, L. Ortiz, and J. Anderson, "CW measurements of electromagnetic shields," IEEE Trans. Electromagn. Compat.,, Vol. 55, No. 3, 500-507, June 2013.
doi:10.1109/TEMC.2012.2237553

9. Perez, R., Handbook of Electromagnetic Compatibility, 1st Ed., Academic Press, 1995.

10. Said, M. O., "Theory and practice of total ship survivability for ship design," Naval Eng. J., Vol. 107, No. 4, 191-203, July 1995.
doi:10.1111/j.1559-3584.1995.tb03085.x

11. Haag, K., et al. "EMP design guidelines for naval ship systems," IIT Res. Inst., Chicago IL, 1975.

12. Ianoz, M., B. Nicoara, and W. Radasky, "Modeling of an EMP conducted environment," IEEE Trans. Electromagn. Compat., Vol. 38, No. 3, 400-413, August 1996.
doi:10.1109/15.536070

13. Deadrick, F. J., et al. "EMP coupling to ships," Lawrence Livermore Lab., 1980.

14. Cai, M., H. Wan, S. Tang, and P. Xu, "Research on electromagnetic environment above board of ship radiated by HEMP," Int. Conf. Electron. Mech. Eng. Info. Technol., 3442-3444, August 2011.

15. Seiler, Jr., L. W., "A calculational model for high altitude EMP,", Air Force Inst. Technol., Wright-Patterson Air Force Base, Ohio, March 1975.

16. Meng, C., "Numerical simulation of the HEMP environment," IEEE Trans. Electromagn. Compat., Vol. 55, No. 3, 440-445, June 2013.
doi:10.1109/TEMC.2013.2258024

17. Wei, H.-C. and J.-F. Kiang, "Near-ground transient field of a high-altitude electromagnetic pulse (HEMP) considering nonlinear air conductivity and ground reflection," Progress In Electromagnetics Research M, Vol. 48, 45-54, 2016.
doi:10.2528/PIERM16021901

18. Jefimenko, O. D., Electromagnetic Retardation and Theory of Relativity, Electret Scientific, 2004.

19. Ohmori, S., A. Irimata, H. Morikawa, K. Kondo, Y. Hase, and S. Miura, "Characteristics of sea reflection fading in maritime satellite communications," IEEE Trans. Antennas Propagat., Vol. 33, No. 8, 838-845, August 1985.
doi:10.1109/TAP.1985.1143680

20. Sobieski, P., A. Guissard, C. Baufays, and P. Siraut, "Sea surface scattering calculations in maritime satellite communications," IEEE Trans. Commun., Vol. 41, No. 10, 1525-1533, October 1993.
doi:10.1109/26.237887

21. Benhmammouch, O., A. Khenchaf, and N. Caouren, "Modelling roughness effects on propagation of electromagnetic waves in a maritime environment: A hybrid approach," IET Radar, Sonar, Navig., Vol. 5, No. 9, 1018-1025, December 2011.
doi:10.1049/iet-rsn.2009.0078

22. Vicen-Bueno, R., R. Carrasco-Alvarez, M. P. Jarabo-Amores, J. C. Nieto-Borge, and M. Rosa-Zurera, "Ship detection by different data," IET Radar, Sonar, Navig., Vol. 5, No. 2, 144-154, October 2011.
doi:10.1049/iet-rsn.2010.0001

23. Sevgi, L., "Target reflectivity and RCS interactions in integrated maritime surveillance systems based on surface-wave high-frequency radars," IEEE Antennas Propagat. Mag., Vol. 43, No. 1, 36-51, February 2001.
doi:10.1109/74.920017

24. Levy, M., Parabolic Equation Methods for Electromagnetic Wave Propagation, Inst. Electr. Eng., 2000.
doi:10.1049/PBEW045E

25. Miller, A. R., R. M. Brown, and E. Vegh, "New derivation for the rough-surface reflection coefficient and for the distribution of sea-wave elevations," IEE Proc. H: Microwaves Opt. Antennas, Vol. 131, No. 2, 114-116, 1984.
doi:10.1049/ip-h-1.1984.0022