Vol. 39
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-09-25
Estimation of Whole-Body Average SAR in Human Body Exposed to a Base Station Antenna
By
Progress In Electromagnetics Research M, Vol. 39, 19-26, 2014
Abstract
Electromagnetic wave absorption inside a human body is investigated. The human body has been modeled using 3D voxel based dataset considering different electrical parameters. At GSM 900 band, Specific Absorption Rate (SAR) induced inside the human body model exposed to a radiating base station antenna (BSA) has been calculated for multiple number of carrier frequencies and input power of 20 W/carrier. Distance (R) of human body from BSA is varied in the range of 0.5 m to 5.0 m. Values of whole-body average SAR obtained by hybrid FDTD method closely match with that obtained by SFDTD method. For number of carrier frequency equal to five and R = 0.5 m, maximum value of whole-body average SAR obtained by both hybrid FDTD and SFDTD method is found to be 0.69 W/kg which decreases either with increase of R or decrease of number of carrier frequencies. Safety distance for general public is found to be 1.5 m for number of carrier frequencies equal to five. Summary of performance comparison shows that hybrid FDTD method is faster and requires less memory than SFDTD method.
Citation
Md. Faruk Ali, and Sudhabindu Ray, "Estimation of Whole-Body Average SAR in Human Body Exposed to a Base Station Antenna," Progress In Electromagnetics Research M, Vol. 39, 19-26, 2014.
doi:10.2528/PIERM14080201
References

1. Kundi, M. and H. P. Hutter, "Mobile phone base stations-effects on wellbeing and health," Pathophysiology, Vol. 16, 123-135, ELSEVIER, Aug. 2009.
doi:10.1016/j.pathophys.2009.01.008

2. Stalling, W., Wireless Communication and Networks, Prentice Hall, 2002.

3. Kumar, N. and G. Kumar, "Biological effects of cell tower radiation on human body," International Symposium on Microwave and Optical Technology (ISMOT), Dec. 2009, Available: http://briarcli®heights.org/bch/wp-content/uploads/2011/12/celltowerradiationeffects-100317162351-phpapp01.pdf.

4. Ali, F., R. R. Sahoo, and S. Ray, "Study of maximum local temperature rise and hotspots distribution in a human head for GSM900 mobile phone," International Conference on Eco-friendly Computing and Communication Systems (ICECCS), 72-78, Advances in Energy Aware Computing and Communication System, Tata McGraw Hill, India, Oct. 2013, ISBN-13:978-9-35-13432-5.

5. Lennart, H., "Epidemiological evidence for an association between use of wireless phones and tumor diseases," Pathophysiology, PATPHY-595, ELSEVIER, 2009.

6. Blackman, C. F., et al. "Effects of ELF fields on calciumion e²ux from brain tissue in vitro," Radiation Research, Vol. 92, 510-520, 1982.
doi:10.2307/3575923

7. Lai, H. and N. P. Singh, "Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells," Bioelectromagnetics, Vol. 18, 446-454, 1997.
doi:10.1002/(SICI)1521-186X(1997)18:6<446::AID-BEM7>3.0.CO;2-2

8. Kundi, M. and H. Peter, "Mobile phone base stations-effect on wellbeing and health," Pathophysiology, Vol. 16, 123-135, ELSEVIER, 2009.
doi:10.1016/j.pathophys.2009.01.008

9. ICNIRP "Guidelines for limiting exposure to time- varying electric, magnetic, and electromagnetic fields (10 kHz to 300 GHz)," Health Physics, Vol. 74, No. 4, 494-522, Apr. 1998.

10. Council of the European Communities "Recommendation of 12 July 1999 on the limitation of exposure of general public to electromagnetic fields (0 Hz to 300 GHz)," O±cial Journal of the European Communities, L.199/59-61, Jul. 30, 1999.

11. Karwowski, A., "Evaluating exposure to radio-frequency emissions from base station antennas," 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 1877-1881, Dec. 2002, Available: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1045504&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs all.jsp%3Farnumber%3D1045504.
doi:10.1109/PIMRC.2002.1045504

12. Karwowski, A., "Comparison of simple models for predicting radiofrequency fields in vicinity of base station antennas," Electronics Letters, Vol. 36, No. 10, 859-861, May 2000.
doi:10.1049/el:20000669

13. Wu, Y. and I. Wassell, "Introduction to the segmented finite-difference time-domain method," IEEE Trans. on Magnetics, Vol. 45, No. 3, 1364-1367, Mar. 2009.
doi:10.1109/TMAG.2009.2012628

14. MATLAB 7.1, The MathWorks, Inc., , Available: http://www.mathworks.com.

15., The Zubal Phantom data, MRI Head Phantom Data Description, Available: http://noodle.med.yale.edu/phantom//tissman/ArmsDownTiss3-6/vox tiss8.dat.

16. "Dielectric properties of the human body tissue in the frequency range of 10 Hz-100 GHz,", Available: http://niremf.ifac.cnr.it/tissprop.

17. Ali, F. and S. Ray, "SAR analysis using SFDTD and hybrid FDTD," 5th International Conference on Computers and Devices for Communication (CODEC) MMT, 1-4, Institute of Radio Physics and Electronics, University of Calcutta, India, Dec. 2012.

18. Kraus, J. D. and R. J. Marhefka, Antennas for All Applications, Tata Mc.Graw-Hill Publishing Company Limited, New Delhi, India, Third Reprint, 2003.

19. Sullivan, D. M., Electromagnetic Simulation Using the FDTD Method, IEEE Press, New York, 2000.
doi:10.1109/9780470544518

20. Ali, M. F. and S. Ray, "Study of EM wave absorption and shielding characteristics for a bonsai tree for GSM-900 band," Progress In Electromagnetics Research C, Vol. 49, 149-157, 2014.
doi:10.2528/PIERC14031404